Learning single-index models with neural networks
Denny Wu ({f/
dennywu@nyu.edu '

Center for Computational Mathematics, Flatiron Institute

Center for Data Science, New York University [ ]



Introduction

O [LOSW?24] Neural network learns low-dimensional polynomials near the
information-theoretic limit.

O [OSSW?24] Learning sum of diverse features: computational hardness and efficient
gradient-based training for ridge combinations.

O [OSSW?24] Pretrained transformer efficiently learns low-dimensional target
functions in context.
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Introduction: Single-index Model

Gaussian single-index model: 7, (x) = 0.((x,0)), x ~ N(0, 14). J

(3 Requires learning the direction 8 € R? and link function 0. : R — R.

(0 We assume o is a polynomial with degree p and information exponent k .

Baseline I: information theoretic limit

Theorem ([Bach 17], [Barbier et al. 19], [Damian et al. 24]...)

Information theoretically, n = d samples are necessary and sufficient to learn f..
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Introduction: Single-index Model

Gaussian single-index model: 7, (x) = 0.((x,0)), x ~ N(0, 14). J

(3 Requires learning the direction 8 € R? and link function 0. : R — R.

(3 We assume o, is a polynomial with degree p and information exponent k .

Baseline Il: complexity of non-adaptive (linear) estimators

Theorem ([Ghorbani et al. 19], [Donhauser et al. 21], [Gavrilopoulos et al. 24]...)

Rotationally invariant kernel methods requires n 2 dP samples to learn f..

Question: what is the statistical complexity of adaptive methods? J




Introduction: Information Exponent

Hermite expansion: o,(z) = Y2, aHe;(z),

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of o, is defined as k = [E(0.) = min{k € N : a; # 0}.
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~E[VwL(fun)] ~ E[Vw(fun(x)f(x))]
= -E[G;(<X, 0))0/(<X7 w))] +

.Z(i+1)2a7+1ﬂ;+1 <W, >i +...
i—0 S——

d—i/2 at initialization

o Gradient concentration.
[Elxa’ ((x, w))F*(x)] = + 30y xio' ({xi, w))F*(xi)|| S \/d/n.

e n = Q(d") samples required to achieve nontrivial concentration.



Introduction: Information Exponent

Hermite expansion: o,(z) = Y2, aHe;(z),

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of o, is defined as k = [E(0.) = min{k € N, : a; # 0}.
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Intuition: the amount of information in the gradient at random initialization.

e For k > 1, parameters are
initialized at (approximate)
saddle point .

oTVL ?
~ q-(k-1)/2




Introduction: Complexity of SGD Learning

Theorem ([Ben Arous et al. 21], [Bietti et al. 22], [Damian et al. 23]...)

A two-layer neural network optimized by (variants of) gradient descent

can learn f, with information exponent k using n > d®) samples.

Question: does information exponent capture the computational hardness?

Consider the gradient of expected squared loss for one neuron f,,(x):

ViExy(fu(x) = y)? ¢ By y - Vwhu(x) |

correlational query



Introduction: Statistical Query Lower Bounds

e Statistical query (5Q).

1§ = Exy[o(x, )] <.
o Correlational statistical query (CSQ).

|G = Exy[o(x)y]l <.

—1/2

( Connection to sample complexity: T~ n < i.i.d. concentration error.

Theorem ([Damian et al. 22], [Abbe et al. 23], [Damian et al. 24]...)

To learn polynomial f, with information exponent k (using polynomial compute),

e CSQ learner requires n > d“/?> samples. o SQ learner requires n > d samples.




Outline of This Talk

SQ algorithm [CM20] Smoothed SGD [DNGL23]  One-pass SGD  Kernel methods
CSQ lower bound [DLS22] [BAGJ22] [GMMM21]
Information | | | L L »
T

theoretic limit!

d O(d) O(d*12) O(d1)  O(d?)

Complexity of learning single-index polynomial w. degree p & information exponent k .

O Part 1: SGD implements SQ and learns polynomial £, in n = O(d) samples

O Part 2: Learning sum of M single-index models, M =< d7 (extensive rank)
[ ]

(3 Part 3: Learning rank-r single-index function class in-context via transformer



Architecture and Training Algorithm

Width-N Two-layer NN: fyn(x) = ﬁ SN aio((x, wi) + by).

Architecture hidden layer

input ¢i = o((x, w;)+b;)

Hermite coefficient up to certain degree). x € RY
e
° _Wist
Wy

e Untrained random bias units. 2/'

e Randomized activation (with non-zero

’ b2 31 output
. /
~ yeR
w. a
@50 "N
Training Algorithm : ¢z —az—
e Layer-wise SGD training. . : aN/
- S

a7y
e Same data used in two consecutive updates.
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Motivation: Can SGD Go Beyond CSQ?

Theorem ([Mondelli & Montanari 18], [Barbier et al. 19], [Chen & Meka 20]...)

For any polynomial o, there exists T s.t. E[T (0.(z))Hei(z)] #0 fori =1 or 2.

Question: can SGD with squared loss utilize such label transformations?

e [Dandi et al. 24] SGD + reused batch gives higher-order (non-correlational) info.

w® = w® - yo' ((x,w)x = no'(0) y-x +nyo’(no’ (O)x] - y)x.

CSQ term non-CSQ term

Can NN optimized by SGD + reused batch learn arbitrary single-index polynomials
near the information-theoretic limit n < d, regardless of the information exponent? J
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Motivation: Can SGD Go Beyond CSQ?

Theorem ([Mondelli & Montanari 18], [Barbier et al. 19], [Chen & Meka 20]...)
For any polynomial o, there exists T s.t. E[T (0.(z))Hei(z)] #0 fori =1 or 2.

Question: can SGD with squared loss utilize such label transformations?

Empirically: Yes!  f.(x) = Hes((x,0)), fun(x)= vazl aiReLU({x, w;) + bi).
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(a) Online SGD (weak recovery) (b) Same-batch GD (test error)

10?
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SGD Training of Two-layer Neural Network

Algorithm 1: Gradient-based training of two-layer neural network

Input : Learning rates n', momentum parameter £', number of steps Ty, T2, £ regularization \.

Phase I: normalized SGD on first-layer parameters
for t =0 to T; do
x ~N(0,14), y=fu(x) +<;
it — wi— 0"V (fo,(x) — y)?

// Draw i.i.d. training example (x,y)
// First gradient descent step

ﬁ,}? «— ﬁ/; = ntﬁw(fét(x) — y)2 ; // Second gradient descent step

t+1 ~ T te~t ty .
w; <—wj—.f(w-—w-),

J J
t+1
Wi

// Interpolation step
—w WL G=1, N

// Normalization

end

Phase Il: SGD on second-layer parameters
‘ a <« argminaekNTL2 Z,T:zl(f@(x,-) —y)? 4+ Mal?; // Ridge regression estimator
Output: Prediction function x — fg(x) with 0 = (5, wJT17 bj)jN,l.

e Ingredient |: resample batch in every two steps.
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SGD is Almost Information Theoretically Optimal

Theorem ([LOSW24] Complexity of SGD Training)

For arbitrary single-index polynomial target functions, Algorithm 1

achieves population loss Ex[(f.(x)—fun(x))?] < € using

n= 04(de~?) , N = O4(c?).

-

SGD+batch reuse [This work] ~ Smoothed SGD [DNGL23]  One-pass SGD  Kernel methods
SQ algorithm [CM20] CSQ lower bound [DLS22] [BAGJ22] [GMMM21]

Information 1 1 1 1 >
theoretic limit! !

d 6(d) O(d"'2) O(d1)  O(d?)

Complexity of learning single-index polynomial w. degree p & information exponent k .



Key Ingredients in the Analysis

Ingredient |: Polynomial transformation lowers information exponent

Proposition ([LOSW24] Existence of monomial transformation)

o If 0. is even, there exists i < C, € N, such that IE(c’) = 2,
e If 0. is not even, there exists i < C, € N such that IE(c}) = 1,

for some uniform upper bound C, depending only on the degree p.

Ingredient |l: SGD with reused batch implements monomial transformation

0.(2) = Y0 gaiHei(z), o(z) = Y77, BiHlei(z).

Remark: both conditions satisfied when (; are randomly drawn, w.p. Q(1).
16



Beyond Polynomial Link Functions

Question: Can we go beyond learning single-index polynomials?

Definition: generative exponent [Damian et al. 2024]

The generative exponent of 0. is defined as k. := minyc 2, [E(7T o0.).

Interpretation: smallest information exponent after arbitrary L? transformation.

Theorem ([LOSW24] SGD for Higher Generative Exponent o)

For arbitrary single-index models with generative exponent k. and o.,0" € L*(¥),

Algorithm 1 achieves population loss Ex[(f.(x)—fun(x))?] < o0a,p(1) using
d (if ke =1)
n~T>{dlogd (ifk.=2)

dP-=1  (if k, > 3).
17



Motivation: Learning Diverse Features Simultaneously

Additive Model with M Tasks

1
fo(x) = —Zom(<x,9m>)7 M = d7 fory>0 .

e Link functions: o, : R — R has degree p and information exponent k.

e Diversity of tasks: M < ( maxuzm (Om, 0,,,/>2)71/2 AdY2,

=

e Question 1. Can we learn f. via gradient-based training of two-layer neural
network? What is the statistical and computational complexity of SGD?

e Question 2. What is the computational hardness of learning this additive model
class, and how does it differ from the previously studied finite-M setting?
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Efficiency of Online SGD Learning

Theorem ([OSSW24] Statistical Complexity of SGD Training)

For k > 2, layer-wise (online) SGD training of two-layer neural network achieves e

population loss using
n= 0g(Md** v Mde™2), N = Og(M“T/2c71),

aZ’/aZ’l‘ > 1.

where constant Cx = MaX oy

Comparison against prior results.

. . . -
O Kernel ridge regression requires n 2> d? samples.

7 GD-based training for multi-index model requires n > (M? v d°®) samples.

20



Localization of Neurons

Prior analysis: subspace random features

span{vy, -+ ,vpr} vg

GD Training

Gradient-based feature learning “localizes” parameters into rank-M subspace. )
Our analysis: task localization 10
After first-layer training, for each task 6,,, there 0s0

exists some student neurons w; s.t.

(Om,wj) >1—¢. o025

-0.50

-0.75 ®

-1.00
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Statistical Query Lower Bounds

Theorem ([OSSW24] CSQ Lower Bound)

For a CSQ algorithm to learn f. using polynomially many queries, we must have

n>M.dk/?

Theorem ([0SSW24] SQ Lower Bound)
Given fixed M =< d” with v > 0, for any p > 0, there exists some o, with degree p

| \.

depending only on p,~, such that an SQ learner (with polynomial compute) requires

nz (M-d)

For SQ, learning additive model with M tasks # learning M single-index models.



SQ Lower Bound Derivation (sketch)

Proposition ([0OSSW24] “Superorthogonal” Polynomials)

For any K, | € N, there exists a non-zero polynomial g : R — R that satisfies:

E.[(g(z)) Hex(2)] = O,
foreveryl< k< Kand1<i<|.

O Why is restriction to fixed-degree polynomial transformations sufficient?
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Complexity of Learning Additive Models

SQ lower bound CSQ lower bound One-pass SGD Kernel methods
[This work] [This work] [This work] [GMMM21]
Information | | | |
theoretic limit' ! ! - ! —>
(Md)” Md*/2 O(Md+—1) 0(d®)

Figure 1: Complexity of learning width-M additive model w. degree p & information exponent k .

(3 Computational-statistical gap

e Learning is information-theoretically possible with n > Md samples.

e SQ learner requires n 2 (Md)? where p can be made arbitrarily large.

O Closing the sample complexity gap
e Match CSQ rate via a smoothing procedure?
e Match SQ rate via reusing batch?
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Motivation: Learning Single-index Models In-Context

In-context learning [Brown et al. 2020]

Observation: LLMs can learn in-context, i.e., construct new predictors from labeled
examples (context) presented in the input without parameter updates.
s 2 s 2
Pretraining Inference
yl_(t) = o((x;,0,)) yl(t) }72(:) . },},(1t) (Parameters not updated)
917...,97"‘!61‘ Py | L L ! ! yf:U(<Xf79*>)
A A
{ > large language model (LLM) > (Xyﬁ\\(y 7
— | (x2,y2)
. RORVOINORNC RN OV C)
N J N J
Intuition: LLM can implement (efficient) algorithms in its forward pass. )
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Motivation: Why Single-index Models?

Prior Results: pretrained linear transformer (TF) learns linear functions in context.

Theorem ([Zhang et al. 23], [Ahn et al. 23], [Mahankali et al. 23],...)

Linear TF pretrained on linear function class Fiim = {f | f(x) = (x,0),0 ~ S (1)}
achieves in-context (roughly) prediction risk competitive with the best linear model.

(0 Expressivity beyond linear models?

(3 Adaptivity to structure of function class?

26



Adaptivity to Low-dimensional Function Class

Definition (Gaussian single-index model on

Define the function class ¥ in which f(x) = o((x,8)), x Lt N(0,14), and
0 o : R — R has degree at most p and information exponent at least k.

o) = 1.

3 0 is drawn uniformly from fixed rank-r subspace where r < d , |

Number of in-context examples n required to learn f € F*°

® For algorithms that directly learn f from the test prompt, n = d necessary.

® For algorithms that find rank-r subspace via pretraining, n = poly(r) sufficient.

Can a pretrained TF learn the single-index function class F%? with an in-context
sample complexity independent of the ambient dimensionality d?

27



Adaptivity to Low-dimensional Function Class

Definition (Gaussian single-index model on

Define the function class F** in which f(x) = o((x,8)), x Lt N(0,14), and

0 o : R — R has degree at most p and information exponent at least k.

@3 6 is drawn uniformly from fixed rank-r subspace where r < d , ||0]] = 1.
14
12 — d=64,=2 — d=16,r=8
—— d=64,r=4 1.2 —— d=32,r=8
1.0
d=64,r=8 d=64,r=8
¥ ¥1.0
0.8 O
5 goo %
50.6 S
3 ol
504 80.4 L W
0-2 02| ‘MMMML%M
0.0 . . 0.0 o
0 50 100 150 200 250 0 50 100 150 200 250

in-context sample size n

in-context sample size n
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Gradient-based Training of Attention Model

Linear Attention Module with MLP Layer

T KQ
faten (E; WPV, WKQ) —E+W"E. (w)
p
where

O’(WIXl -‘rbl) o'(wian—Fbl) o'(waque,y +b1)

E = . . .
o(wyxi+by) - o(Wyx,+bn) (W Xguer + bn)

1 e Yn 0

Alternatively, we can introduce the reparameterization I € RV*Y and write

F(X, ¥, Xquery; W, T, b) = <%ra(wx +b1y)y, o(W xque + b)>.
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Gradient-based Training of Transformer

Algorithm 2: Gradient-based training of transformer with MLP layer
Input : Learning rate 71, weight decay A1, A2, prompt length ny, na, number of tasks Ty, T».

Phase I: Gradient descent for MLP layer
Draw data {(x%,y1,. .-, X;1’y'$1 ,xt yt)}z—zllwith prompt length ny.

wi e w® — oy [V, A ST (0 FWO, T, )2 4 w7/ one 6D step

Phase Il: Empirical risk minimization for attention layer
Ta4T .
Draw data {(x%,yi,... ,vaz7y§2 ,xt yt)}tzl-rlf1 with prompt length na.
* . Ty+T: A ) .
I <« argminy .%2 Zr:lTlf],(yt — f(Ww® T, b)) + 22 ; // ridge regression

Qutput: trained parameters (W(l), r,b).

e Ingredient I: one GD step on MLP layer to identify rank-r subspace.

e Ingredient II: train attention layer to approximate nonlinear link function.

.
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Dimension-free In-context Sample Complexity

Theorem ([OSSW24] Sample Complexity of ICL)

TF trained by Algorithm 2 achieves prediction risk E|f (x; W, T, b) — f.(x)| = o4(1),

with high probability, if the number of pretraining tasks T, the number of training
examples n, the test prompt length n*, and the number of neurons N satisfy
n, T>d®W — p=>r00) N> 00
| Ay — ——
—_———

pretraining cost approximation

inference cost

[ Pretraining sample complexity scales with 10° 3
ambient dimensionality d. » h
%
c
O In-context sample complexity scales with the £,
. . . 5 ~o+ d=16 \
target subspace dimensionality r < d. g e 432 LR
kernel \\‘
° —_ two£la}/erdN_|[\:: 9‘-.\,"& )
— pretraine: K-
1072
107 102

in-context sample size N* 31
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