
Learning single-index models with neural networks

Denny Wu
dennywu@nyu.edu

Center for Data Science, New York University
Center for Computational Mathematics, Flatiron Institute

1

Introduction

❐ [LOSW24] Neural network learns low-dimensional polynomials near the
information-theoretic limit.

❐ [OSSW24] Learning sum of diverse features: computational hardness and efficient
gradient-based training for ridge combinations.

❐ [OSSW24] Pretrained transformer efficiently learns low-dimensional target
functions in context.

Jason D. Lee Kazusato Oko Yujin Song Taiji Suzuki

2

Introduction: Single-index Model

Gaussian single-index model: f∗(x) = σ∗(⟨x ,θ⟩), x ∼ N (0, I d).

❐ Requires learning the direction θ ∈ Rd and link function σ∗ : R → R.
• Learning algorithm should adapt to low-dimensional structure.

❐ We assume σ∗ is a polynomial with degree p and information exponent k .

Baseline I: information theoretic limit

Theorem ([Bach 17], [Barbier et al. 19], [Damian et al. 24]...)

Information theoretically, n ≍ d samples are necessary and sufficient to learn f∗.

/ For generic σ∗, algorithms may require exponential compute to achieve this.

3

Introduction: Single-index Model

Gaussian single-index model: f∗(x) = σ∗(⟨x ,θ⟩), x ∼ N (0, I d).

❐ Requires learning the direction θ ∈ Rd and link function σ∗ : R → R.
• Learning algorithm should adapt to low-dimensional structure.

❐ We assume σ∗ is a polynomial with degree p and information exponent k .

Baseline II: complexity of non-adaptive (linear) estimators

Theorem ([Ghorbani et al. 19], [Donhauser et al. 21], [Gavrilopoulos et al. 24]...)

Rotationally invariant kernel methods requires n ≳ dp samples to learn f∗.

Question: what is the statistical complexity of adaptive methods?

• Example: polynomial width neural network optimized by gradient descent.
4

Introduction: Information Exponent

Hermite expansion: σ∗(z) =
∑∞

i=0 α
∗
i Hei (z), α∗

i = E[σ∗(z)Hei (z)].

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of σ∗ is defined as k = IE(σ∗) = min{k ∈ N+ : α∗
k ̸= 0}.

−E[∇wL(fNN)] ≈ E[∇w (fNN(x)f∗(x))]

= θ · E[σ′
∗(⟨x ,θ⟩)σ′(⟨x ,w⟩)] + w · E[...] Stein’s lemma

= θ ·
∞∑
i=0

(i + 1)2α∗
i+1βi+1 ⟨w ,θ⟩i︸ ︷︷ ︸

d−i/2 at initialization

+... Hermite expansion

• Gradient concentration. with high probability,∥∥E[xσ′(⟨x ,w⟩)f ∗(x)]− 1
n

∑n
i=1 x iσ

′(⟨x i ,w⟩)f ∗(x i)
∥∥ ≲

√
d/n.

• n = Ω(dk) samples required to achieve nontrivial concentration.
5

Introduction: Information Exponent

Hermite expansion: σ∗(z) =
∑∞

i=0 α
∗
i Hei (z), α∗

i = E[σ∗(z)Hei (z)].

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of σ∗ is defined as k = IE(σ∗) = min{k ∈ N+ : α∗
k ̸= 0}.

Intuition: the amount of information in the gradient at random initialization.

• For k > 1, parameters are
initialized at (approximate)
saddle point .

• Most of the data is used to
escape from the high entropy
“equator” around initialization.

6

Introduction: Complexity of SGD Learning

Theorem ([Ben Arous et al. 21], [Bietti et al. 22], [Damian et al. 23]...)

A two-layer neural network optimized by (variants of) gradient descent

can learn f∗ with information exponent k using n ≳ dΘ(k) samples.

• k ≤ p ⇒ NN + gradient-based training outperforms kernel model ,

• For large k, NN + GD cannot match the information theoretic limit /

Question: does information exponent capture the computational hardness?

Consider the gradient of expected squared loss for one neuron fw (x):

∇wEx,y (fw (x)− y)2 ∝ −Ex,y [y · ∇w fw (x)︸ ︷︷ ︸
correlational query

] + Ex [fw (x) · ∇w fw (x)︸ ︷︷ ︸
can be evaluated without y

].

• Idea: count number of “accurate” correlational queries required by the algorithm.

7

Introduction: Statistical Query Lower Bounds

• Statistical query (SQ). Algorithm has access to “noisy” version of ϕ ∈ L2:

|q̃ − Ex,y [ϕ(x , y)]| ≤ τ.

• Correlational statistical query (CSQ). ϕ restricted to be correlational :

|q̃ − Ex,y [ϕ(x)y]| ≤ τ.

❐ Connection to sample complexity : τ ≈ n−1/2 ⇔ i.i.d. concentration error.

Theorem ([Damian et al. 22], [Abbe et al. 23], [Damian et al. 24]...)

To learn polynomial f∗ with information exponent k (using polynomial compute),

• CSQ learner requires n ≳ dk/2 samples. • SQ learner requires n ≳ d samples.

Remark: SQ learners may nonlinearly transform y to lower the information exponent.

8

Outline of This Talk

Information
theoretic limit

SQ algorithm [CM20] Smoothed SGD [DNGL23]
CSQ lower bound [DLS22]

One-pass SGD
[BAGJ22]

Kernel methods
[GMMM21]

d Õ(d) Õ(dk/2) Õ(dk−1) O(dp)

Complexity of learning single-index polynomial w. degree p & information exponent k .

❐ Part 1: SGD implements SQ and learns polynomial f∗ in n = Õ(d) samples
• By reusing the same training examples in the gradient computation, SGD

implements nonlinear transformation that lowers the information exponent.

❐ Part 2: Learning sum of M single-index models, M ≍ dγ (extensive rank)
• Efficient gradient-based training of two-layer NNs.
• Computational hardness measured by (C)SQ lower bounds.

❐ Part 3: Learning rank-r single-index function class in-context via transformer
• Pretrained transformer achieves in-context complexity that only depends on

the dimensionality of function class r ≪ d . 9

Architecture and Training Algorithm

Width-N Two-layer NN: fNN(x) = 1√
N

∑N
i=1 aiσ(⟨x ,w i ⟩+ bi).

Architecture
• Randomized activation (with non-zero

Hermite coefficient up to certain degree).

• Required to establish strong recovery.

• Untrained random bias units.

• Required to approximate unknown link.

Training Algorithm
• Layer-wise SGD training.

• First-layer finds target direction θ,
second-layer fits link function σ∗.

• Same data used in two consecutive updates.

[x]1

[x]2

[x]d

ϕN

ϕ3

ϕ2

ϕ1w1,1w1,1

w1,2w1,2

w1,dw1,d

y

a1a1

a2a2

a3a3

aNaN

... ...

input
x ∈ Rd

hidden layer
ϕi = σ(⟨x ,w i ⟩+bi)

output
y ∈ R

10

Motivation: Can SGD Go Beyond CSQ?

Theorem ([Mondelli & Montanari 18], [Barbier et al. 19], [Chen & Meka 20]...)

For any polynomial σ∗, there exists T s.t. E[T (σ∗(z))Hei (z)] ̸= 0 for i = 1 or 2.

Question: can SGD with squared loss utilize such label transformations?

• [Dandi et al. 24] SGD + reused batch gives higher-order (non-correlational) info.

• Intuition. Consider two consecutive GD steps on (x , y), starting from w (0) = 0.

w (2) = w (1) + η · yσ′(⟨x ,w (1)⟩)x = ησ′(0) y · x︸︷︷︸
CSQ term

+ η yσ′(ησ′(0)∥x∥2 · y)x︸ ︷︷ ︸
non-CSQ term

.

Can NN optimized by SGD + reused batch learn arbitrary single-index polynomials
near the information-theoretic limit n ≍ d , regardless of the information exponent?

12

Motivation: Can SGD Go Beyond CSQ?

Theorem ([Mondelli & Montanari 18], [Barbier et al. 19], [Chen & Meka 20]...)

For any polynomial σ∗, there exists T s.t. E[T (σ∗(z))Hei (z)] ̸= 0 for i = 1 or 2.

Question: can SGD with squared loss utilize such label transformations?

Empirically: Yes! f∗(x) = He3(⟨x ,θ⟩), fNN(x) =
∑N

i=1 aiReLU(⟨x ,w i ⟩+ bi).

102 103

dimensionality d

104

105

sa
m

pl
e

siz
e

n

n d2

w, 2

0.02

0.04

0.06

0.08

(a) Online SGD (weak recovery)

102 103

dimensionality d

103

104

sa
m

pl
e

siz
e

n
n d

Err

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) Same-batch GD (test error) 13

SGD Training of Two-layer Neural Network

Algorithm 1: Gradient-based training of two-layer neural network
Input : Learning rates ηt , momentum parameter ξt , number of steps T1,T2, ℓ2 regularization λ.
Initialize w0

j ∼ Unif(Sd−1(1)), aj ∼ Unif{±ra}.
Phase I: normalized SGD on first-layer parameters

for t = 0 to T1 do
x ∼ N (0, I d), y = f∗(x) + ς ; // Draw i.i.d. training example (x, y)

w̃ t
j ← w t

j − ηt∇̃w (fΘt (x)− y)2 ; // First gradient descent step

w̃ t
j ← w̃ t

j − ηt∇̃w (fΘ̃t
(x)− y)2 ; // Second gradient descent step

w t+1
j ← w̃ t

j − ξt(w̃ t
j − w t

j) ; // Interpolation step

w t+1
j ← w t+1

j /∥w t+1
j ∥, (j = 1, . . . ,N) ; // Normalization

end
Initialize bj ∼ Unif([−Cb,Cb]).
Phase II: SGD on second-layer parameters

â ← argmina∈RN
1
T2

∑T2
i=1(fΘ(x i)− yi)

2 + λ∥a∥2 ; // Ridge regression estimator

Output: Prediction function x 7→ fΘ̂(x) with Θ̂ = (âj ,w
T1
j , bj)

N
j=1.

• Ingredient I: resample batch in every two steps.

• Ingredient II: interpolation & normalization to stabilize dynamics.
14

SGD is Almost Information Theoretically Optimal

Theorem ([LOSW24] Complexity of SGD Training)

For arbitrary single-index polynomial target functions, Algorithm 1 (w. appropriate
hyperparameters) achieves population loss Ex [(f∗(x)−fNN(x))2] ≤ ε using

n = Õd(dε
−2) , N = Õd(ε

−1).

• Algorithm almost agnostic to link function (only requires knowledge of degree p).

• Hides constant Cp that depends exponentially on the degree p.

Information
theoretic limit

SGD+batch reuse [This work]

SQ algorithm [CM20]

Smoothed SGD [DNGL23]
CSQ lower bound [DLS22]

One-pass SGD
[BAGJ22]

Kernel methods
[GMMM21]

d Õ(d) Õ(dk/2) Õ(dk−1) O(dp)

Complexity of learning single-index polynomial w. degree p & information exponent k .
15

Key Ingredients in the Analysis

Ingredient I: Polynomial transformation lowers information exponent

Proposition ([LOSW24] Existence of monomial transformation)

• If σ∗ is even, there exists i ≤ Cp ∈ N+ such that IE(σi
∗) = 2,

• If σ∗ is not even, there exists i ≤ Cp ∈ N+ such that IE(σi
∗) = 1,

for some uniform upper bound Cp depending only on the degree p.

Ingredient II: SGD with reused batch implements monomial transformation

σ∗(z) =
∑p

i=0 α
∗
i Hei (z), σ(z) =

∑Cp

i=0 βiHei (z).

• For weak recovery, we need E[Hej(z)σ(i)(z)(σ(1)(z))i−1] ̸= 0, for i ≤ Cp, j = 0, 1.

• For strong recovery, Hermite coefficients should satisfy αjβj ≥ 0 for k ≤ j ≤ p.

Remark: both conditions satisfied when βi are randomly drawn, w.p. Ω(1).
16

Beyond Polynomial Link Functions

Question: Can we go beyond learning single-index polynomials?

Definition: generative exponent [Damian et al. 2024]

The generative exponent of σ∗ is defined as k∗ := minT ∈L2(γ) IE(T ◦ σ∗).

Interpretation: smallest information exponent after arbitrary L2 transformation.

• For any polynomial σ∗, k∗ ≤ 2. • For σ∗(z) = z2 exp
(
−z2), k∗ = 4.

Theorem ([LOSW24] SGD for Higher Generative Exponent σ∗)

For arbitrary single-index models with generative exponent k∗ and σ∗, σ
′′
∗ ∈ L4(γ),

Algorithm 1 achieves population loss Ex [(f∗(x)−fNN(x))2] ≤ od,P(1) using

n ≃ T ≫

d (if k∗ = 1)

d log d (if k∗ = 2)

dp∗−1 (if k∗ ≥ 3).
17

Motivation: Learning Diverse Features Simultaneously

Additive Model with M Tasks (ridge combinations)

f∗(x) =
1√
M

M∑
m=1

σm(⟨x ,θm⟩), M ≍ dγ for γ > 0 .

• Link functions: σm : R → R has degree p and information exponent k.

• Diversity of tasks: M ≲
(
maxm ̸=m′⟨θm,θm′⟩2

)−1/2 ∧ d1/2.

⇒ e.g., θ1,θ2, ...,θM
i.i.d.∼ Unif(Sd−1(1)) with M ≲ d1/2.

• Question 1. Can we learn f∗ via gradient-based training of two-layer neural
network? What is the statistical and computational complexity of SGD?

• Question 2. What is the computational hardness of learning this additive model
class, and how does it differ from the previously studied finite-M setting?

19

Efficiency of Online SGD Learning

Theorem ([OSSW24] Statistical Complexity of SGD Training)

For k > 2, layer-wise (online) SGD training of two-layer neural network achieves ε

population loss using

n = Õd

(
Mdk−1 ∨Mdε−2), N = Õd

(
MCk+1/2ε−1),

where constant Ck = maxm ̸=m′
∣∣αm

k /α
m′
k

∣∣ ≥ 1.

Comparison against prior results.

❐ Kernel ridge regression requires n ≳ dp samples.

• KRR does not adapt to low-dimensional structures.

❐ GD-based training for multi-index model requires n ≳
(
Mp ∨ dΘ(k)

)
samples.

• Does not take into account the additive structure of f∗
⇒ statistical complexity worsen when M becomes large.

20

Localization of Neurons

Prior analysis: subspace random features [Damian et al. 22], [Abbe et al. 23],...

Gradient-based feature learning “localizes” parameters into rank-M subspace.

Our analysis: task localization

After first-layer training, for each task θm, there
exists some student neurons w j s.t.

⟨θm,w j⟩ ≥ 1 − ε.

• Fine-tuning: if downstream task consists of
M̃ ≪ M directions, n ≳ M̃ε−2 samples needed.

21

Statistical Query Lower Bounds

Heuristic: we equate the tolerance with the scale of concentration error τ ≈ n−1/2

Theorem ([OSSW24] CSQ Lower Bound)

For a CSQ algorithm to learn f∗ using polynomially many queries, we must have

n ≳ M · dk/2

For CSQ, learning additive model with M tasks ≈ learning M single-index models.

Theorem ([OSSW24] SQ Lower Bound)

Given fixed M ≍ dγ with γ > 0, for any ρ > 0, there exists some σ∗ with degree p

depending only on ρ, γ, such that an SQ learner (with polynomial compute) requires

n ≳ (M · d)ρ

For SQ, learning additive model with M tasks ̸= learning M single-index models.
22

SQ Lower Bound Derivation (sketch)

Proposition ([OSSW24] “Superorthogonal” Polynomials)

For any K , I ∈ N+, there exists a non-zero polynomial g : R → R that satisfies:

Ez [(g(z))
iHek(z)] = 0,

for every 1 ≤ k ≤ K and 1 ≤ i ≤ I .

Intuition: given fixed I ∈ N+, there exist polynomial link functions such that
polynomial transformations up to degree I cannot lower its information exponent.

(i) For I = 1 and K ∈ N, g(z) = HeK+1(z).

(ii) For I = K = 2, g(z) = He4(z)− 4
15He6(z) +

11
280He8(z)− 19

4725He10(z) +
311

997920He12(z)−
719

37837800He14(z) +
14297

15567552000He16(z)− 35369
1042053012000He18(z) + (35369

41682120480000 −
1

83364240960000

√
11163552839

38)He20(z).

❐ Why is restriction to fixed-degree polynomial transformations sufficient?
• When M → ∞, the statistical query ϕ(x , y) applied to one single-index task

can be Taylor expanded, which limits the available transformations.
23

Complexity of Learning Additive Models

Information
theoretic limit

SQ lower bound
[This work]

CSQ lower bound
[This work]

One-pass SGD
[This work]

Kernel methods
[GMMM21]

Md (Md)ρ Mdk/2 Õ(Mdk−1) O(dp)

Figure 1: Complexity of learning width-M additive model w. degree p & information exponent k .

❐ Computational-statistical gap
• Learning is information-theoretically possible with n ≳ Md samples.

• SQ learner requires n ≳ (Md)ρ where ρ can be made arbitrarily large.

❐ Closing the sample complexity gap
• Match CSQ rate via a smoothing procedure?
• Match SQ rate via reusing batch?

24

Motivation: Learning Single-index Models In-Context

In-context learning [Brown et al. 2020]
Observation: LLMs can learn in-context, i.e., construct new predictors from labeled
examples (context) presented in the input without parameter updates.

Pretraining

y
(t)
i = σt(⟨x i ,θt⟩)

θ1, . . . ,θT
i.i.d.∼ Pθ

θ1θ2

θT

large language model (LLM)

ŷ
(t)
1 ŷ

(t)
2 ŷ

(t)
n· · ·

x
(t)
1 y

(t)
1 x

(t)
2 y

(t)
2 · · · x

(t)
n y

(t)
n

Inference

(Parameters not updated)

yi = σ(⟨x i ,θ∗⟩)

(x1, y1)

(x2, y2)

(xquery , ?)

Intuition: LLM can implement (efficient) algorithms in its forward pass.
25

Motivation: Why Single-index Models?

Prior Results: pretrained linear transformer (TF) learns linear functions in context.

Theorem ([Zhang et al. 23], [Ahn et al. 23], [Mahankali et al. 23],...)

Linear TF pretrained on linear function class Flin =
{
f | f (x) = ⟨x ,θ⟩,θ ∼ Sd−1(1)

}
achieves in-context (roughly) prediction risk competitive with the best linear model.

❐ Expressivity beyond linear models?
• Linear TF can implement limited algorithms, e.g., linear regression.

• Single-index model is a natural nonlinear generalization of linear predictor.

❐ Adaptivity to structure of function class?
• Solving single-index regression on test prompt requires long context.

⇒ kernel: n ≳ dp. CSQ: n ≳ dΘ(k). SQ: n ≳ d .

• TF should adapt to target function class via pretraining.
⇒ improved ICL efficiency (e.g., ridge vs. LASSO [Garg et al. 22]).

26

Adaptivity to Low-dimensional Function Class

Definition (Gaussian single-index model on rank-r subspace)

Define the function class Fk,p
r in which f (x) = σ(⟨x ,θ⟩), x i.i.d.∼ N (0, I d), and

❐ σ : R → R has degree at most p and information exponent at least k.

❐ θ is drawn uniformly from fixed rank-r subspace where r ≪ d , ∥θ∥ = 1.

Number of in-context examples n required to learn f ∈ Fk,p
r

/ For algorithms that directly learn f from the test prompt, n ≳ d necessary.

• Kernel method: n ≳ dp. CSQ algorithm: n ≳ dΘ(k). SQ algorithm: n ≳ d .

, For algorithms that find rank-r subspace via pretraining, n ≳ poly(r) sufficient.

Can a pretrained TF learn the single-index function class Fk,p
r with an in-context

sample complexity independent of the ambient dimensionality d?
27

Adaptivity to Low-dimensional Function Class

Definition (Gaussian single-index model on rank-r subspace)

Define the function class Fk,p
r in which f (x) = σ(⟨x ,θ⟩), x i.i.d.∼ N (0, I d), and

❐ σ : R → R has degree at most p and information exponent at least k.

❐ θ is drawn uniformly from fixed rank-r subspace where r ≪ d , ∥θ∥ = 1.

0 50 100 150 200 250
in-context sample size n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pr
ed

ict
io

n
ris

k

d=64,r=2
d=64,r=4
d=64,r=8

0 50 100 150 200 250
in-context sample size n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pr
ed

ict
io

n
ris

k

d=16,r=8
d=32,r=8
d=64,r=8

• 12-layer GPT2 model (∼22M parameters) + Adam used in [Garg et al. 22].
28

Gradient-based Training of Attention Model

Linear Attention Module with MLP Layer

[This Work]

fAttn(E ;W PV ,W KQ) = E + W PVE ·
(

E⊤W KQE
ρ

)
where

E =

σ(w⊤

1 x1 + b1) · · · σ(w⊤
1 xn + b1) σ(w⊤

1 xquery + b1)
...

. . .
...

...
σ(w⊤

N x1 + bN) · · · σ(w⊤
N xn + bN) σ(w⊤

N xquery + bN)

y1 · · · yn 0

• Trainable MLP (embedding) weights W to adapt to low-dimensional structure.

• Nonlinear activation σ = ReLU to express nonlinear labels.

Alternatively, we can introduce the reparameterization Γ ∈ RN×N and write

f (X , y , xquery ;W ,Γ, b) =
〈

1
N
Γσ

(
WX + b1⊤

N

)
y , σ

(
W T xquery + b

)〉
.

29

Gradient-based Training of Transformer

Algorithm 2: Gradient-based training of transformer with MLP layer
Input : Learning rate η1, weight decay λ1, λ2, prompt length n1, n2, number of tasks T1,T2.
Initialize w (0)

j ∼ Unif(Sd−1) (j ∈ [m]); b(0)
j ∼ Unif([−1, 1]) (j ∈ [m]);

Γ
(0)
j,j ∼ Unif({±γ}) (j ∈ [m]) and Γ

(0)
i,j = 0 (i ̸= j ∈ [m]).

Phase I: Gradient descent for MLP layer
Draw data {(x t

1, y
t
1, . . . , x

t
n1
, y t

n1
, x t , y t)}T1

t=1with prompt length n1.

w (1)
j ← w (0)

j − η1

[
∇w j

1
T1

∑T1
t=1(y

t − f (W (0), Γ(0), b(0)))2 + λ1w
(0)
j

]
; // one GD step

Initialize bj ∼ Unif([−Cb log d,Cb log d]).
Phase II: Empirical risk minimization for attention layer

Draw data {(x t
1, y

t
1, . . . , x

t
N2

, y t
n2
, x t , y t)}T1+T2

t=T1+1 with prompt length n2.

Γ∗ ← argminΓ
1
T2

∑T1+T2
t=T1+1(y

t − f (W (1), Γ, b))2 +
λ2
2 ∥Γ∥

2
F ; // ridge regression

Output: trained parameters (W (1), Γ∗, b).

• Ingredient I: one GD step on MLP layer to identify rank-r subspace.
• Gradient of correlation term spans r -dimensional subspace [Damian et al. 22].

• Ingredient II: train attention layer to approximate nonlinear link function.
• Attention layer performs regression on polynomial basis defined by MLP layer.

30

Dimension-free In-context Sample Complexity

Theorem ([OSSW24] Sample Complexity of ICL)

TF trained by Algorithm 2 achieves prediction risk E|f (x ;W ,Γ, b)− f∗(x)| = od(1),
with high probability, if the number of pretraining tasks T , the number of training
examples n, the test prompt length n∗, and the number of neurons N satisfy

n,T ≳ dΘ(k)︸ ︷︷ ︸
pretraining cost

, n∗ ≳ rΘ(p)︸ ︷︷ ︸
inference cost

, N ≳ rΘ(p)︸ ︷︷ ︸
approximation

.

❐ Pretraining sample complexity scales with
ambient dimensionality d .

❐ In-context sample complexity scales with the
target subspace dimensionality r < d .

• Adaptivity: in-context complexity parallel
to r -dimensional polynomial regression.

101 102

in-context sample size N *

10 2

10 1

100

pr
ed

ict
io

n
ris

k

d = 16
d = 32
kernel
two-layer NN
pretrained TF

31

References

Thank you! Happy to take questions :)

• Vaswani et al., 2017. Attention is all you need.

• Ghorbani et al., 2020. Linearized two-layers neural networks in high dimension.

• Chen and Meka, 2020. Learning polynomials of few relevant dimensions.

• Brown et al., 2020. Language models are few-shot learners.

• Ben Arous et al., 2021. Stochastic gradient descent on non-convex losses from
high-dimensional inference.

• Bietti et al., 2022. Learning single-index models with shallow neural networks.

• Garg et al., 2022. What can transformers learn in-context? A case study of simple
function classes.

• Damian et al., 2023. Smoothing the landscape boosts the signal for SGD: optimal
sample complexity for learning single index models.

• Dandi et al., 2024. The benefits of reusing batches for gradient descent in two-layer
networks: breaking the curse of information and leap exponents.

• Damian et al., 2024. Computational complexity of learning Gaussian single-index models.
32

