Learning single-index models with neural networks

Denny Wu dennywu@nyu.edu

Center for Data Science, New York University Center for Computational Mathematics, Flatiron Institute

Introduction

- ❐ [LOSW24] Neural network learns low-dimensional polynomials near the information-theoretic limit.
- ❐ [OSSW24] Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations.
- ❐ [OSSW24] Pretrained transformer efficiently learns low-dimensional target functions in context.

Jason D. Lee Kazusato Oko Yujin Song Taiji Suzuki

Introduction: Single-index Model

Gaussian single-index model: $f_*(x) = \sigma_*(\langle x, \theta \rangle)$, $x \sim \mathcal{N}(0, I_d)$.

 \Box Requires learning the <u>direction</u> $\theta\in\mathbb{R}^d$ and <u>link function</u> $\sigma_*:\mathbb{R}\to\mathbb{R}.$

• Learning algorithm should adapt to low-dimensional structure.

 \Box We assume σ_* is a polynomial with degree p and information exponent k.

Baseline I: information theoretic limit

Theorem ([Bach 17], [Barbier et al. 19], [Damian et al. 24]...)

Information theoretically, $n \times d$ samples are necessary and sufficient to learn f_* .

 \odot For generic σ_* , algorithms may require exponential compute to achieve this.

Introduction: Single-index Model

Gaussian single-index model: $f_*(x) = \sigma_*(\langle x, \theta \rangle)$, $x \sim \mathcal{N}(0, I_d)$.

 \Box Requires learning the <u>direction</u> $\theta\in\mathbb{R}^d$ and <u>link function</u> $\sigma_*:\mathbb{R}\to\mathbb{R}.$

• Learning algorithm should adapt to low-dimensional structure.

 \Box We assume σ_* is a polynomial with degree p and information exponent k.

Baseline II: complexity of non-adaptive (linear) estimators

Theorem ([Ghorbani et al. 19], [Donhauser et al. 21], [Gavrilopoulos et al. 24]...)

Rotationally invariant kernel methods requires $\vert n \gtrsim d^p \vert$ samples to learn f_* .

Question: what is the statistical complexity of *adaptive* methods?

• Example: polynomial width neural network optimized by gradient descent.

Introduction: Information Exponent

Hermite expansion:
$$
\sigma_*(z) = \sum_{i=0}^{\infty} \alpha_i^* \text{He}_i(z)
$$
, $\alpha_i^* = \mathbb{E}[\sigma_*(z) \text{He}_i(z)].$

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of σ_* is defined as $k = \text{IE}(\sigma_*) = \min\{k \in \mathbb{N}_+ : \alpha_k^* \neq 0\}.$

$$
-\mathbb{E}[\nabla_{\mathbf{w}} \mathcal{L}(f_{NN})] \approx \mathbb{E}[\nabla_{\mathbf{w}}(f_{NN}(\mathbf{x})f_{*}(\mathbf{x}))]
$$

\n
$$
= \theta \cdot \mathbb{E}[\sigma'_{*}(\langle \mathbf{x}, \theta \rangle) \sigma'(\langle \mathbf{x}, \mathbf{w} \rangle)] + w \cdot \mathbb{E}[\dots] \quad \text{Stein's lemma}
$$

\n
$$
= \theta \cdot \sum_{i=0}^{\infty} (i+1)^{2} \alpha_{i+1}^{*} \beta_{i+1} \underbrace{\langle \mathbf{w}, \theta \rangle^{i}}_{d^{-i/2} \text{ at initialization}} + \dots \quad \text{Hermite expansion}
$$

• Gradient concentration. with high probability,

$$
\left\|\mathbb{E}[x\sigma'(\langle x,w\rangle)f^*(x)]-\frac{1}{n}\sum_{i=1}^n x_i\sigma'(\langle x_i,w\rangle)f^*(x_i)\right\|\lesssim \sqrt{d/n}.
$$

• $n = \Omega(d^k)$ samples required to achieve nontrivial concentration.

Introduction: Information Exponent

Hermite expansion: $\sigma_*(z) = \sum_{i=0}^{\infty} \alpha_i^* \text{He}_i(z)$, $\alpha_i^* = \mathbb{E}[\sigma_*(z) \text{He}_i(z)]$.

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of σ_* is defined as $k = \text{IE}(\sigma_*) = \min\{k \in \mathbb{N}_+ : \alpha_k^* \neq 0\}.$

Intuition: the amount of information in the gradient at *random initialization*.

- For $k > 1$, parameters are initialized at (approximate) saddle point .
- Most of the data is used to escape from the high entropy "equator" around initialization.

Introduction: Complexity of SGD Learning

Theorem ([Ben Arous et al. 21], [Bietti et al. 22], [Damian et al. 23]...)

A two-layer neural network optimized by (variants of) gradient descent can learn f_* with information exponent k using $n \gtrsim d^{\Theta(k)}$ samples.

- $k \leq p$ \Rightarrow NN + gradient-based training outperforms kernel model \odot
- For large k, $NN + GD$ cannot match the information theoretic limit \odot

Question: does information exponent capture the *computational hardness?*

Consider the gradient of expected squared loss for one neuron
$$
f_w(x)
$$
:
\n
$$
\nabla_w \mathbb{E}_{x,y} (f_w(x) - y)^2 \propto -\mathbb{E}_{x,y} [\underbrace{y \cdot \nabla_w f_w(x)}_{\text{correlational query}}] + \mathbb{E}_x [\underbrace{f_w(x) \cdot \nabla_w f_w(x)}_{\text{can be evaluated without } y}]
$$

• Idea: count number of "accurate" correlational queries required by the algorithm.

Introduction: Statistical Query Lower Bounds

• Statistical query (SQ). Algorithm has access to "noisy" version of $\phi \in L^2$:

 $|\tilde{q} - \mathbb{E}_{x,y}[\phi(\mathbf{x}, y)]| < \tau.$

- Correlational statistical query (CSQ) . ϕ restricted to be correlational: $|\tilde{q} - \mathbb{E}_{\mathbf{x},\mathbf{y}}[\phi(\mathbf{x})\mathbf{y}]| \leq \tau.$
- **□** Connection to sample complexity: $\tau \approx n^{-1/2}$ \Leftrightarrow i.i.d. concentration error.

Theorem ([Damian et al. 22], [Abbe et al. 23], [Damian et al. 24]...)

To learn polynomial f_* with information exponent k (using **polynomial compute**),

• CSQ learner requires $n \gtrsim d^{k/2}$ samples. • SQ learner requires $n \gtrsim d$ samples.

Remark: SQ learners may nonlinearly transform y to lower the information exponent.

Outline of This Talk

 \Box Part 1: SGD implements SQ and learns polynomial f_* in $n = \tilde{O}(d)$ samples • By reusing the same training examples in the gradient computation, SGD

implements nonlinear transformation that lowers the information exponent.

D Part 2: Learning sum of M single-index models, $M \times d^{\gamma}$ (extensive rank)

- Efficient gradient-based training of two-layer NNs.
- Computational hardness measured by (C)SQ lower bounds.

Part 3: Learning *rank-r* single-index function class in-context via transformer • Pretrained transformer achieves in-context complexity that only depends on

the dimensionality of function class $r \ll d$. 9

Architecture and Training Algorithm

Width-*N* Two-layer NN:
$$
f_{NN}(x) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \sigma(\langle x, w_i \rangle + b_i)
$$
.

Architecture

- Randomized activation (with non-zero Hermite coefficient up to certain degree).
	- Required to establish strong recovery.
- Untrained random bias units.
	- Required to approximate unknown link.

Training Algorithm

- Layer-wise SGD training.
	- First-layer finds target direction θ , second-layer fits link function σ_* .
- Same data used in two consecutive updates.

Motivation: Can SGD Go Beyond CSQ?

Theorem ([Mondelli & Montanari 18], [Barbier et al. 19], [Chen & Meka 20]...)

For any polynomial σ_* , there exists T s.t. $\mathbb{E}[\mathcal{T}(\sigma_*(z))\mathbb{H}_{e_i}(z)] \neq 0$ for $i = 1$ or 2.

Question: can SGD with *squared loss* utilize such label transformations?

• [Dandi et al. 24] $SGD +$ reused batch gives higher-order (non-correlational) info.

• Intuition. Consider two consecutive GD steps on (x, y) , starting from $w^{(0)} = 0$.

$$
\mathbf{w}^{(2)} = \mathbf{w}^{(1)} + \eta \cdot y \sigma'(\langle \mathbf{x}, \mathbf{w}^{(1)} \rangle) \mathbf{x} = \eta \sigma'(0) \underbrace{\mathbf{y} \cdot \mathbf{x}}_{\text{CSQ term}} + \eta \underbrace{y \sigma'(\eta \sigma'(0) ||\mathbf{x}||^2 \cdot \mathbf{y}) \mathbf{x}}_{\text{non-CSQ term}}.
$$

Can NN optimized by $SGD +$ reused batch learn *arbitrary* single-index polynomials near the information-theoretic limit $n \times d$, regardless of the information exponent?

Motivation: Can SGD Go Beyond CSQ?

Theorem ([Mondelli & Montanari 18], [Barbier et al. 19], [Chen & Meka 20]...)

For any polynomial σ_* , there exists T s.t. $\mathbb{E}[\mathcal{T}(\sigma_*(z))\mathbb{H}_{e_i}(z)] \neq 0$ for $i = 1$ or 2.

Question: can SGD with squared loss utilize such label transformations?

Empirically: Yes! $f_*(x) = \text{He}_3(\langle x, \theta \rangle)$, $f_{NN}(x) = \sum_{i=1}^N a_i \text{ReLU}(\langle x, w_i \rangle + b_i)$.

SGD Training of Two-layer Neural Network

Algorithm 1: Gradient-based training of two-layer neural network

Input : Learning rates η^t , momentum parameter ξ^t , number of steps $\mathcal{T}_1, \mathcal{T}_2, \, \ell_2$ regularization $\lambda.$ **Initialize** $w_j^0 \sim \mathrm{Unif}(\mathbb{S}^{d-1}(1))$, $a_j \sim \mathrm{Unif}\{\pm r_a\}$.

Phase I: normalized SGD on first-layer parameters

```
\nfor 
$$
t = 0
$$
 to  $T_1$  do\n     $x \sim \mathcal{N}(0, I_d), y = f_*(x) + \varsigma$ ;\n    // Draw i.i.d. training example  $(x, y)$ \n $\tilde{w}_j^t \leftarrow \tilde{w}_j^t - \eta^t \tilde{\nabla}_w (f_{\Theta_t}(x) - y)^2$ ;\n    // First gradient descent step\n     $\tilde{w}_j^t \leftarrow \tilde{w}_j^t - \eta^t \tilde{\nabla}_w (f_{\Theta_t}(x) - y)^2$ ;\n    // Second gradient descent step\n     $w_j^{t+1} \leftarrow \tilde{w}_j^t - \xi^t (\tilde{w}_j^t - w_j^t)$ ;\n    // Interpolation step\n     $w_j^{t+1} \leftarrow w_j^{t+1} / ||w_j^{t+1}||, (j = 1, ..., N);$ \n    // Normalization\n     $\text{Phase II: SGD on second-layer parameters}$ \n $\hat{a} \leftarrow \operatorname{argmin}_{a \in \mathbb{R}^N} \frac{1}{T_2} \sum_{i=1}^T (f_{\Theta}(x_i) - y_i)^2 + \lambda ||a||^2; \quad // Ridge regression estimator\n     $\text{Output: Prediction function } x \mapsto f_{\Theta}(x) \text{ with } \hat{\Theta} = (\hat{a}_j, w_j^{T_1}, b_j)_{j=1}^N.$ \n$ 
```

- • Ingredient I: resample batch in every two steps.
- Ingredient II: interpolation & normalization to stabilize dynamics.

SGD is Almost Information Theoretically Optimal

Theorem ([LOSW24] Complexity of SGD Training)

For arbitrary single-index polynomial target functions, Algorithm [1](#page-12-0) (w . appropriate hyperparameters) achieves population loss $\mathbb{E}_x[(f_*(x)-f_\text{NN}(x))^2]\leq \varepsilon$ using

$$
n = \tilde{O}_d(d\varepsilon^{-2}) \, , \qquad N = \tilde{O}_d(\varepsilon^{-1}).
$$

- Algorithm almost agnostic to link function (only requires knowledge of *degree p*).
- Hides constant C_p that depends exponentially on the degree p.

Complexity of learning single-index polynomial w. degree $p \&$ information exponent k .

Key Ingredients in the Analysis

Ingredient I: Polynomial transformation lowers information exponent

Proposition ([LOSW24] Existence of monomial transformation)

- If σ_* is even, there exists $i \leq C_\rho \in \mathbb{N}_+$ such that $\mathrm{IE}(\sigma_*^i)=2,$
- \bullet If σ_* is not even, there exists $i\leq \mathcal{C}_\rho\in\mathbb{N}_+$ such that $\text{IE}(\sigma_*^i)=1,$

for some uniform upper bound C_p depending only on the degree p.

Ingredient II: SGD with reused batch implements monomial transformation $\sigma_*(z) = \sum_{i=0}^p \alpha_i^* \text{He}_i(z), \quad \sigma(z) = \sum_{i=0}^{C_p} \beta_i \text{He}_i(z).$

- $\bullet\,$ For weak recovery, we need $\mathbb{E}[\mathrm{He}_j(z)\sigma^{(i)}(z)(\sigma^{(1)}(z))^{i-1}]\neq 0$, for $i\leq \mathcal{C}_p, \, j=0,1.$
- For strong recovery, Hermite coefficients should satisfy $\alpha_i\beta_i \geq 0$ for $k \leq j \leq p$.

Remark: both conditions satisfied when β_i are randomly drawn, w.p. $\Omega(1)$.

Beyond Polynomial Link Functions

Question: Can we go beyond learning single-index *polynomials*?

Definition: generative exponent [Damian et al. 2024]

The generative exponent of σ_* is defined as $k_*:=\min_{\mathcal{T}\in L^2(\gamma)}\text{IE}(\mathcal{T}\circ\sigma_*)$.

Interpretation: smallest information exponent after arbitrary L^2 transformation.

• For any polynomial σ_* , $k_* \leq 2$. • For $\sigma_*(z) = z^2 \exp(-z^2)$, $k_* = 4$.

Theorem ($[LOSW24]$ SGD for Higher Generative Exponent σ_*)

For arbitrary single-index models with generative exponent k_* and $\sigma_*, \sigma''_* \in L^4(\gamma)$, Algorithm [1](#page-12-0) achieves population loss $\mathbb{E}_{\mathsf{x}}[(f_*(\mathsf{x})\!-\!f_{\text{NN}}(\mathsf{x}))^2] \le o_{d,\mathbb{P}}(1)$ using

$$
n \simeq T \gg \begin{cases} d & (if \ k_{*} = 1) \\ d \log d & (if \ k_{*} = 2) \\ d^{p_{*}-1} & (if \ k_{*} \geq 3). \end{cases}
$$

Motivation: Learning Diverse Features Simultaneously

Additive Model with M Tasks (ridge combinations)

$$
f_*(x) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \sigma_m(\langle x, \theta_m \rangle), \qquad M \approx d^{\gamma} \text{ for } \gamma > 0.
$$

- Link functions: $\sigma_m : \mathbb{R} \to \mathbb{R}$ has degree p and information exponent k.
- $\bullet \;\; \mathsf{Diversity \; of \; tasks:} \;\; \mathcal{M} \lesssim \big(\max_{m \neq m'} \langle \boldsymbol{\theta}_m, \boldsymbol{\theta}_{m'} \rangle^2 \big)^{-1/2} \wedge d^{1/2}.$ \Rightarrow e.g., $\theta_1, \theta_2, ..., \theta_M \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mathbb{S}^{d-1}(1))$ with $M \lesssim d^{1/2}.$
- Question 1. Can we learn f_∗ via gradient-based training of two-layer neural network? What is the statistical and computational complexity of SGD?
- Question 2. What is the computational hardness of learning this additive model class, and how does it differ from the previously studied finite-M setting?

Theorem ([OSSW24] Statistical Complexity of SGD Training)

For $k > 2$, layer-wise (online) SGD training of two-layer neural network achieves ε population loss using

$$
n = \tilde{O}_d\left(Md^{k-1} \vee Md\varepsilon^{-2}\right), \qquad N = \tilde{O}_d\left(M^{C_k+1/2}\varepsilon^{-1}\right),
$$

where constant $C_k = \max_{m \neq m'} \left| \alpha_k^m / \alpha_k^{m'} \right| \geq 1$.

Comparison against prior results.

- **□ Kernel ridge regression** requires $n \gtrsim d^p$ samples.
	- KRR does not adapt to low-dimensional structures.

\Box GD-based training for multi-index model requires $n \gtrsim (M^{\rho} \vee d^{\Theta(k)})$ samples.

• Does not take into account the additive structure of f_{α} \Rightarrow statistical complexity worsen when M becomes large.

Localization of Neurons

Prior analysis: *subspace random features* [Damian et al. 22], [Abbe et al. 23],...

Gradient-based feature learning "localizes" parameters into rank-M subspace.

Our analysis: task localization

After first-layer training, for each task θ_m , there exists some student neurons w_i s.t.

 $\langle \theta_m, w_i \rangle > 1 - \varepsilon$.

• Fine-tuning: if downstream task consists of $\tilde{M} \ll M$ directions, $n \gtrsim \tilde{M} \varepsilon^{-2}$ samples needed.

Heuristic: we equate the tolerance with the scale of concentration error $\tau \approx n^{-1/2}$

Theorem ([OSSW24] CSQ Lower Bound)

For a CSQ algorithm to learn f_* using polynomially many queries, we must have $n \gtrsim M \cdot d^{k/2}$

For CSQ, learning additive model with M tasks \approx learning M single-index models.

Theorem ([OSSW24] SQ Lower Bound)

Given fixed $M \times d^{\gamma}$ with $\gamma > 0$, for any $\rho > 0$, there exists some σ_* with degree p depending only on ρ, γ , such that an SQ learner (with polynomial compute) requires

 $n \gtrsim (M \cdot d)^{\rho}$

For SQ, learning additive model with M tasks \neq learning M single-index models.

Proposition ([OSSW24] "Superorthogonal" Polynomials)

For any $K, I \in \mathbb{N}_+$, there exists a non-zero polynomial $g : \mathbb{R} \to \mathbb{R}$ that satisfies: $\mathbb{E}_z[(g(z))^i\text{He}_k(z)] = 0.$

for every $1 \leq k \leq K$ and $1 \leq i \leq l$.

Intuition: given fixed $I \in \mathbb{N}_+$, there exist *polynomial* link functions such that polynomial transformations up to degree I cannot lower its information exponent.

(i) For
$$
l = 1
$$
 and $K \in \mathbb{N}$, $g(z) = \text{He}_{K+1}(z)$.

(ii) For $I = K = 2$, $g(z) = \text{He}_4(z) - \frac{4}{15} \text{He}_6(z) + \frac{11}{280} \text{He}_8(z) - \frac{19}{4725} \text{He}_{10}(z) + \frac{311}{997920} \text{He}_{12}(z) - \frac{323699}{37837800} \text{He}_{14}(z) + \frac{353699}{15567552000} \text{He}_{16}(z) - \frac{35569}{1042053012000} \text{He}_{18}(z) + (\frac{35569$ $\frac{1}{83364240960000} \sqrt{\frac{11163552839}{38}}$ He₂₀(z).

❐ Why is restriction to fixed-degree polynomial transformations sufficient?

• When $M \to \infty$, the statistical query $\phi(x, y)$ applied to one single-index task can be Taylor expanded, which limits the available transformations.

Complexity of Learning Additive Models

❐ Computational-statistical gap

- Learning is information-theoretically possible with $n \geq Md$ samples.
- SQ learner requires $n \gtrsim (Md)^{\rho}$ where ρ can be made arbitrarily large.

\Box Closing the sample complexity gap

- Match CSQ rate via a smoothing procedure?
- Match SQ rate via reusing batch?

Motivation: Learning Single-index Models In-Context

In-context learning [Brown et al. 2020]

Observation: LLMs can learn in-context, i.e., construct new predictors from labeled examples (context) presented in the input without parameter updates.

Intuition: LLM can implement (efficient) algorithms in its forward pass.

Motivation: Why Single-index Models?

Prior Results: pretrained *linear* transformer (TF) learns *linear* functions in context.

Theorem ([Zhang et al. 23], [Ahn et al. 23], [Mahankali et al. 23],...)

Linear TF pretrained on linear function class $\mathcal{F}_\text{lin}=\big\{f\,|\,f(\pmb{x})=\langle\pmb{x},\pmb{\theta}\sim\mathbb{S}^{d-1}(1)\big\}$ achieves in-context (roughly) prediction risk competitive with the **best linear model**.

□ Expressivity beyond linear models?

- Linear TF can implement limited algorithms, e.g., linear regression.
- Single-index model is a natural nonlinear generalization of linear predictor.

❐ Adaptivity to structure of function class?

- Solving single-index regression on test prompt requires long context. \Rightarrow kernel: $n \gtrsim d^{\rho}$. CSQ: $n \gtrsim d^{\Theta(k)}$. SQ: $n \gtrsim d$.
- TF should adapt to target function class via pretraining. ⇒ improved ICL efficiency (e.g., ridge vs. LASSO [Garg et al. 22]).

Adaptivity to Low-dimensional Function Class

Definition (Gaussian single-index model on rank-r subspace)

Define the function class $\mathcal{F}_r^{k,p}$ in which $f(x)=\sigma(\langle x,\theta\rangle)$, $x\stackrel{\mathrm{i.i.d.}}{\sim}\mathcal{N}(0,\bm{I}_d)$, and

 $\Box \sigma : \mathbb{R} \to \mathbb{R}$ has degree at most p and information exponent at least k.

 \Box θ is drawn uniformly from fixed rank-r subspace where $r \ll d$, $\|\theta\| = 1$.

Number of in-context examples n required to learn $f \in \mathcal{F}_r^{k,p}$

- \circledcirc For algorithms that directly learn f from the test prompt, $n \gtrsim d$ necessary.
	- Kernel method: $n \gtrsim d^p$. CSQ algorithm: $n \gtrsim d^{\Theta(k)}$. SQ algorithm: $n \gtrsim d$.
- © For algorithms that find rank-r subspace via pretraining, $n \gtrsim \text{poly}(r)$ sufficient.

Can a pretrained TF learn the single-index function class $\mathcal{F}^{k,p}_{r}$ with an in-context sample complexity independent of the ambient dimensionality d?

Adaptivity to Low-dimensional Function Class

Definition (Gaussian single-index model on rank-r subspace)

Define the function class $\mathcal{F}_r^{k,p}$ in which $f(\pmb{x})=\sigma(\langle\pmb{x},\pmb{\theta}\rangle)$, $\pmb{x}\stackrel{\text{i.i.d.}}{\sim}\mathcal{N}(0,\pmb{I}_d)$, and

 $\Box \sigma : \mathbb{R} \to \mathbb{R}$ has degree at most p and information exponent at least k.

 \Box θ is drawn uniformly from fixed rank-r subspace where $r \ll d$, $||\theta|| = 1$.

• 12-layer GPT2 model (∼22M parameters) + Adam used in [Garg et al. 22].

Gradient-based Training of Attention Model

Linear Attention Module with MLP Layer

$$
f_{\text{Attn}}(E; W^{PV}, W^{KQ}) = E + W^{PV} E \cdot \left(\frac{E^{\top} W^{KQ} E}{\rho}\right)
$$

where

$$
\mathbf{E} = \begin{bmatrix} \sigma(\mathbf{w}_1^\top \mathbf{x}_1 + b_1) & \cdots & \sigma(\mathbf{w}_1^\top \mathbf{x}_n + b_1) & \sigma(\mathbf{w}_1^\top \mathbf{x}_{query} + b_1) \\ \vdots & \ddots & \vdots & \vdots \\ \sigma(\mathbf{w}_N^\top \mathbf{x}_1 + b_N) & \cdots & \sigma(\mathbf{w}_N^\top \mathbf{x}_n + b_N) & \sigma(\mathbf{w}_N^\top \mathbf{x}_{query} + b_N) \\ y_1 & \cdots & y_n & 0 \end{bmatrix}
$$

- Trainable MLP (embedding) weights W to adapt to low-dimensional structure.
- Nonlinear activation $\sigma = \text{ReLU}$ to express nonlinear labels.

Alternatively, we can introduce the reparameterization $\boldsymbol{\Gamma} \in \mathbb{R}^{N \times N}$ and write

$$
f(\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{x}_{query}; \boldsymbol{W}, \boldsymbol{\Gamma}, \boldsymbol{b}) = \left\langle \frac{1}{N} \boldsymbol{\Gamma} \sigma \big(\boldsymbol{W} \boldsymbol{X} + \boldsymbol{b} \boldsymbol{1}_{N}^{\top} \big) \boldsymbol{y}, \sigma \big(\boldsymbol{W}^{\top} \boldsymbol{x}_{query} + \boldsymbol{b} \big) \right\rangle.
$$

Gradient-based Training of Transformer

Algorithm 2: Gradient-based training of transformer with MLP layer

Input : Learning rate η_1 , weight decay λ_1, λ_2 , prompt length n_1, n_2 , number of tasks T_1, T_2 . **Initialize** $w_j^{(0)} \sim \text{Unif}(\mathbb{S}^{d-1}) \ (j \in [m])$; $b_j^{(0)} \sim \text{Unif}([-1,1]) \ (j \in [m])$; $\Gamma^{(\mathbf{0})}_{j,j} \sim \mathrm{Unif}(\{\pm \gamma\}) \; (j \in [m])$ and $\Gamma^{(\mathbf{0})}_{i,j} = 0 \; (i \neq j \in [m]).$ Phase I: Gradient descent for MLP layer Draw data $\{(x_1^t, y_1^t, \ldots, x_{n_1}^t, y_{n_1}^t, x^t, y^t)\}_{t=1}^{T_1}$ with prompt length n_1 . $w_j^{(1)} \leftarrow w_j^{(0)} - \eta_1 \left[\nabla_{w_j} \frac{1}{\tau_1} \sum_{t=1}^{\tau_1} (y^t - f(W^{(0)}, \Gamma^{(0)}, b^{(0)}))^2 + \lambda_1 w_j^{(0)} \right]$ // one GD step **Initialize** $b_i \sim \text{Unif}([-C_b \log d, C_b \log d])$. Phase II: Empirical risk minimization for attention layer Draw data $\{(x_1^t, y_1^t, \ldots, x_{N_2}^t, y_{n_2}^t, x^t, y^t)\}_{t=T_1+1}^{T_1+T_2}$ with prompt length n_2 . $\mathsf{\Gamma}^*$ ← argmin_{$\mathsf{\Gamma}$} $\frac{1}{T_2}$ $\sum_{t=T_1+1}^{T_1+T_2} (y^t - f(W^{(1)}, \mathsf{\Gamma}, b))^2 + \frac{\lambda_2}{2} ||\mathsf{\Gamma}||_F^2$; // ridge regression **Output:** trained parameters $(W^{(1)}, \Gamma^*, \bm{b})$.

- • Ingredient I: one GD step on MLP layer to identify rank-r subspace.
	- Gradient of correlation term spans r-dimensional subspace [Damian et al. 22].
- Ingredient II: train *attention layer* to approximate nonlinear link function.
	- \bullet Attention layer performs regression on polynomial basis defined by MLP layer. $_{30}$

Dimension-free In-context Sample Complexity

Theorem ([OSSW24] Sample Complexity of ICL)

TF trained by Algorithm [2](#page-27-0) achieves prediction risk $\mathbb{E}[f(x; W, \Gamma, b) - f_*(x)] = o_d(1)$, with high probability, if the number of pretraining tasks T, the number of training examples n, the test prompt length n^{*}, and the number of neurons N satisfy

- \square Pretraining sample complexity scales with ambient dimensionality d.
- In-context sample complexity scales with the target subspace dimensionality $r < d$.
	- Adaptivity: in-context complexity parallel to r-dimensional polynomial regression.

Thank you! Happy to take questions :)

- Vaswani et al., 2017. Attention is all you need.
- Ghorbani et al., 2020. Linearized two-layers neural networks in high dimension.
- Chen and Meka, 2020. Learning polynomials of few relevant dimensions.
- Brown et al., 2020. Language models are few-shot learners.
- Ben Arous et al., 2021. Stochastic gradient descent on non-convex losses from high-dimensional inference.
- Bietti et al., 2022. Learning single-index models with shallow neural networks.
- Garg et al., 2022. What can transformers learn in-context? A case study of simple function classes.
- Damian et al., 2023. Smoothing the landscape boosts the signal for SGD: optimal sample complexity for learning single index models.
- Dandi et al., 2024. The benefits of reusing batches for gradient descent in two-layer networks: breaking the curse of information and leap exponents.
- Damian et al., 2024. Computational complexity of learning Gaussian single-index models.