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Introduction

❐ [RNWL25] Emergence and scaling laws for SGD learning of shallow neural networks.

❐ [BEVW25] Learning quadratic neural networks in high dimensions: SGD dynamics
and scaling laws.
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Neural Scaling Laws & Emergence

Neural Scaling Laws [Hestness et al. 17]
[Kaplan et al. 20] [Hoffmann et al. 22].
Increasing compute and data leads to

predictable power-law decay in the loss.

Functional form: L ∝ D−α + N−β + C .
• D – number of data points.
• N – number of trainable parameters.

Emergent Capabilities [Wei et al. 22]
[Ganguli et al. 22] [Schaeffer et al. 23].
Learning of individual tasks (skills)
exhibits sharp transition with scale.

/ Unpredictable scaling in skill acquisition. 3



Neural Scaling Laws & Emergence

Question: How do we reconcile the emergent behavior in skill acquisition and the
smooth power-law decay in the cumulative loss?

Hypothesis: Additive Model [Michaud et al. 24] [Nam et al. 24]

❐ Cumulative objective can be decomposed into a large number of distinct
“skills”, the learning of each exhibits abrupt phase transitions.

❐ Juxtaposition of numerous emergent learning curves at different timescales
results in a predictable power-law rate in the cumulative loss.

Compute

Cumulative loss

Loss at m-th task

Our goal: theoretical justification of the
additive model hypothesis in the context of

SGD learning of shallow neural network.
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Emergence in Gradient-based Feature Learning

Gaussian single-index model: f∗(x) = σ∗(⟨x ,θ⟩), x ∼ N (0, I d).

❐ Requires learning the direction θ ∈ Rd and link function σ∗ : R → R.
• Learning algorithm should adapt to low-dimensional structure.

Hermite expansion: σ∗(z) =
∑∞

j=0 α
∗
j Hej(z), α∗

j = E[σ∗(z)Hej(z)].

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of σ∗ is defined as k = IE(σ∗) = min{k ∈ N+ : α∗
k ̸= 0}.

Intuition: the amount of information in the gradient at random initialization.

Theorem ([Ben Arous et al. 21], [Bietti et al. 22], [Damian et al. 23]...)

A two-layer neural network can learn single-index target f∗ with
information exponent k using n ≃ T ≳ dΘ(k) samples and SGD steps.
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Emergence in Gradient-based Feature Learning

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of σ∗ is defined as k = IE(σ∗) = min{k ∈ N+ : α∗
k ̸= 0}.

Phenomenon: most training examples in online SGD are used to escape from the
high-entropy equator (d−1/2 overlap) around random initialization.

Emergent learning curve

❐ Search Phase. Online SGD
exhibits extensive loss plateau
up to T ≍ dk−1 steps.

❐ Descent Phase. Loss sharply

decreases in T = Θ̃(1) .
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Scaling Laws for Shallow Neural Networks?

Target Function: Width-M∗ two-layer neural network

f∗(x) =
M∗∑
m=1

am · σ(⟨x ,θm⟩),
∑

a2
m = 1, {θm}M∗

m=1 orthonormal.

❐ Extensive width. M∗ ≍ dα for α > 0.
• Large number of “tasks” ⇒ infinite-dimensional effective dynamics.

❐ Large condition number. amax/amin ∼ Poly(M∗) .
• Covers power-law decay in second-layer am ≍ m−β , β ∈ [0,∞).

Goal: characterize the optimization and sample complexity of SGD training:

• sharp recovery time (emergence) for individual single-index tasks θm.

• power-law scaling in the cumulative mean squared error (MSE) objective.

7



Prior Results: Well-Conditioned Regime

Theorem ([OSSW24] Sample Complexity of SGD Training)

Assume k > 2 , layer-wise (online) SGD training of two-layer neural network
with N neurons achieves ε population loss using

n = Õd

(
M∗d

k−1 ∨Mdε−2), N = Õd

(
M

κ+1/2
∗ ε−1),

where κ = |amax/amin| ≥ 1 is the condition number.

Comparison against prior results (assume degree-p link σ)

❐ Kernel ridge regression requires n ≳ dp samples.

• KRR does not adapt to low-dimensional structures.

❐ GD-based training for multi-index model requires n ≳
(
dΘ(k)

)
∨Mp

∗ samples.

• Does not account for the additive (ridge-separable) structure of f∗
⇒ sample complexity worsen as M∗ becomes large.
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Prior Results: Well-Conditioned Regime

Width-N Two-layer NN: fNN(x) = 1√
N

∑N
i=1 aiσ(⟨x ,w i ⟩+ bi ).

❐ Correlation loss analysis.
• Under small initialization, MSE loss is

approximated by correlation (i.e.,
interaction between neurons ignored).

• Correlation loss yields alignment with
teacher neurons.

❐ Layer-wise training.
• After {θm}M∗

m=1 recovered, “fine-tune”
second-layer to account for varying am.

• Convex problem with closed-form
solution (under ℓ2 penalty).

[x ]1

[x ]2

[x ]d

ϕN

ϕ3

ϕ2

ϕ1w1,1w1,1

w1,2w1,2

w1,dw1,d

y

a1a1

a2a2

a3a3

aNaN

... ...

input
x ∈ Rd

hidden layer
ϕi = σ(⟨x ,w i ⟩+bi )

output
y ∈ R
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Prior Results: Well-Conditioned Regime

❐ How does high information exponent k > 2 simplify the analysis?

Correlation loss dynamics: each neuron is attracted by the sum of M∗ tasks,

w (t+1) ≈ w (t+1) + η

M∗∑
m=1

am⟨w (t),θm⟩k−1θm +Z t .

⇒ For k sufficiently large, the sum is approximated
by maxm{am⟨w (t),θm⟩k−1}.

, Decoupled dynamics: each student neuron
converges to θm with largest initial overlap.

❐ Why can’t we handle large condition number κ = amax/amin ≫ 1?

• At initialization ⟨w (0),θm⟩2 ≍ d−1 with high probability.

/ All student neurons converge to large am directions, unless N ∼ exp(M∗). 10



Decoupling via MSE Loss + Simultaneous Training

❐ Student model: 2-homogeneous two-layer neural network (matching σ)

f (x) =
N∑
i=1

∥w i∥2
2 · σ(⟨x ,w i ⟩/∥w i∥⟩).

❐ Online SGD training: at time t, compute MSE gradient update

w i (t + 1) = w i (t)− η∇w i (f∗(x)− f (x))2, x ∼ N (0, I d).

Single-stage training! No layer-wise learning & reinitialization, etc.

How does this resolve exponential dependence on condition number κ?

• Tangent & radial dynamics. Starting from small initialization, SGD first “rotates”
w i (t) to align with one of the target neurons θm, after which ∥w i (t)∥ → am rapidly.

• “Automatic deflation”. After θm is recovered, it gets “deleted” from the MSE loss,
so that subsequent student neurons can converge to other target directions.

Theorem ([RNWL25] Complexity of SGD learning)

Assume k > 2 and M∗ ≪ d0.1, m̄ < M∗. If we train a student network with
N = Θ̃(m̄) neurons using online SGD with η ≍ am̄

dk/2poly(M∗)
, then w.h.p.,

❐ If m < m̄, alignment with θm emerges at Tm ≍ a−1
m · η−1dk/2−1 .

❐ All directions up to m̄ are learned at n ≍ T ≍ a−2
m̄ dk−1poly(M∗) .
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Main Theorem: Complexity of SGD Learning

Theorem ([RNWL25] Complexity of SGD learning)

Assume k > 2 and M∗ ≪ d0.1, m̄ < M∗. If we train a student network with
N = Θ̃(m̄) neurons using online SGD with η ≍ am̄

dk/2poly(M∗)
, then w.h.p.,

❐ If m < m̄, alignment with θm emerges at Tm ≍ a−1
m · η−1dk/2−1 .

❐ All directions up to m̄ are learned at n ≍ T ≍ a−2
m̄ dk−1poly(M∗) .

Corollary: ignoring logarithmic factors, achieving small population loss (i.e., learning
all tasks) requires N ≍ M∗ neurons and n ≍ T ≍ a−2

mind
k−1poly(M∗).

• Prior works required sample size or compute exponentially large in the condition
number: n,N ≍ exp

(
amax
amin

)
[Li et al. 22] [Oko et al. 24].

• Our learning procedure does not involve reinitialization [Ge et al. 21] or Stiefel
constraint [Ben Arous et al. 24].
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Neural Scaling Laws for MSE Loss

Corollary ([RNWL25] Emergence & Scaling Laws)

Assume am ≍ m−β for β > 1/2 and fixed learning rate η, then we have

1. Emergence: the m-th teacher neuron is learned at time t · η ∼ dk/2−1mβ .

2. Scaling law: population MSE decays L(t) ∼ N1−2β ∨
(
t · ηd1−k/2

) 1−2β
β .

Intuition: Assume decoupled learn-
ing of different components,

• Direction θm learned at step
Tm ∝ mβη−1dk/2−1.

• L(t) ≈
∑M∗

m=1 a
2
mI{t < Tm} ⇒

L(Tm) ≈
∫∞
m

s−2β ds ∼ m1−2β .

• N < M∗ student neurons reaches∑
s>N a2

s ≍ N1−2β error. Optimization time t

Cumulative loss

L(t) ∼ t
1−2β

β

Loss at m-th task
(emergence at t ∼ mβ)

...
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Neural Scaling Laws for MSE Loss

❐ N1−2β – approximation barrier, determined by the student network width.

❐
(
tηd1−k/2

) 1−2β
β – optimization error, determined by number of SGD steps.

(a) Theoretical scaling law (β = 0.8). (b) Empirical scaling law (β = 0.8).
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Discretizing Properly

Note: the continuous-time (or constant-η) rate can be misleading!

• For a fixed step size, online SGD is unstable for tasks with sufficiently small am.
⇒ η should decay with Tm to resolve smaller signal directions.

Adaptive learning rate for m-th task. Consider learning the top-m neurons.

• “Optimal” learning rate: η ≍ am
dk/2poly(M∗)

, am ≍ m−β .

• Direction θm now learned at n = Tm ∼ mβη−1dk/2−1 = m2βdk−1poly(M∗).

Sample complexity: under this learning rate, for the first m neurons

L(n) ∼
(

n

dk−1poly(M∗)

) 1−2β
2β

, This matches the optimal rate for weak ℓp ball [Johnstone 17].
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Proof Sketch

• Decoupled gradient dynamics.
Let w ι(p) denote the neuron that eventually converged to direction θp, and
mp,q(t) = ⟨w p(t)/∥w p(t)∥,θq⟩ measures the overlap at time t.

• Claim 1 - decoupling. When all m2
ι(p),q (q ̸= p) are small, the learning of

different directions can be approximately decoupled.

• Claim 2 - sharp transitions. Since the norm of w p grows rapidly after
alignment is achieved, all m2

ι(p),q (q ̸= p) remain small when the q-th
direction is recovered by w ι(q) – after which θq no longer affects the learning
dynamics (“automatic deflation”).

• From gradient flow to online SGD.
• Martingale decomposition in [Ben Arous et al. 21] + a refined stochastic

induction argument from [Ren & Lee 24].

• “Unstable” discretization that couples the online SGD dynamics for learning
the top-p teacher neurons.
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SGD Learning of Quadratic Neural Networks

Question: how do we handle the lower
information exponent k = 2 setting?

Empirical observation: the same emergence &
scaling law phenomenon appears in SGD train-
ing of quadratic neural networks.

/ Learning of different teacher directions θm no longer decoupled .

, For quadratic nonlinearity σ(z) = z2 − 1 , the population dynamics admits
closed-form description (see e.g., [Martin et al. 2023]).

Claim. Dynamics of the overlap Gram matrix G(t) = Θ⊤U(t)U(t)⊤Θ ∈ RM∗×M∗ ,
where W = UQ1/2 is the polar decomposition, is given by a Matrix Riccati ODE,

∂tG(t) = 1
∥A∥F

(AG(t) + G(t)A − 2G(t)AG(t)), where Aj,j = aj .
17



Risk Scaling of Gradient Flow

Theorem ([BEVW25] Time Complexity of Gradient Flow)

Assume σ(z) = z2−1, M∗ ≍ dα, α ∈ [0, 1), and am ≍ m−β . Then as d → ∞,

❐ β > 1
2 : Let N = Θd(1). L(t · log d) ∼ t

1−2β
β ∨ N1−2β .

❐ β < 1
2 : Let N

M∗
→ φ ∈ (0,∞). L(t ·M∗ log d) ∼

[(
1 − t

1−2β
β

)
∨
(
1 − φ1−2β)]

+
.

Remark: when β > 1/2 the second-layer coefficients {am}M∗
m=1 are square-summable.

(a) Light-tailed (α > 1/2). (b) Heavy-tailed (α < 1/2). 18



Discretization and Sample Complexity

Algorithm: Stage-wise training with online SGD

Phase I: Online SGD on Stiefel manifold (feature learning)
for t = 0 to T1 do

W̃ t = W t−1 − η∇StL(W t−1; (x t , yt)) ; // Online SGD step

W t = W̃ t

(
W̃

⊤
t W̃ t

)−1/2
; // Polar retraction

end
Phase II: Closed-form for radial component (fine-tuning)

W final
t =W tΩ∗, Ω∗ = argmin

Ω∈RN×N

∑n′

i=1 L
(
W tΩ; (x t+i , yt+i )

)
; // closed-form

❐ Phase I: Online SGD to recover the M∗-dimensional subspace spanned by f∗.
• Discretizes the directional component of gradient flow; dominates the

statistical and computational complexity.
• Challenge: need to control Martingale terms in operator norm since M∗ ≫ 1.

❐ Phase II: “Fine-tuning” on M∗-dimensional subspace (artifact of Stiefel SGD /).
• Closed-form solution; required sample size scales as n′ = Θ̃(N2) ≪ Nd .
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Discretization and Sample Complexity

Theorem ([BEVW25] Sample Complexity of Online SGD)

To track the gradient flow risk curve, it suffices to set the SGD step size as follows.

❐ β > 1
2 : set η−1 ≍ dpolylog(d); hence achieving od(1) population MSE requires

n ≃ T ≃ dpolylog(d).

❐ β < 1
2 : set η−1 ≍ dMβ

∗ polylog
(
1 + d

M∗

)
; this yields

n ≃ T ≃ dM1+β
∗ polylog

(
1 + d

M∗

)
.

❐ β > 1
2 : n = Θ̃(d) – information theoretically optimal up to polylog factors.

❐ β = 0: n = Θ̃(dM∗) – optimal complexity for estimating rank-M∗ subspace.

• M∗ = 1: phase retrieval. Log factors in the time and sample complexity.

• α → 1: proportional regime. Polylogarithmic factors start to diminish.

❐ β ∈
(
0, 1

2

)
: SGD rate likely not sharp in terms of M∗ dependence. 20



Conclusion

SGD learning of two-layer NN
(with high information exponent)

• Recovery of individual neurons
exhibits sharp transition (emergence).

• Cumulative MSE loss has predictable
power-law scaling.
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Future Directions

❐ Anisotropic input: x ∼ N (0,Σ), where Σ =
∑d

i=1 λiv iv⊤
i , λi ≍ i−γ .

• Two-parameter scaling law? (source & capacity conditions)

❐ k = 1 (e.g., ReLU) or heterogeneous information exponents?

❐ Beyond additive structure ⇒ scaling laws for compositional generalization?
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