Learning shallow neural networks in high dimensions:

SGD dynamics and scaling laws
Denny Wu ({//
dennywu@nyu.edu '

Center for Computational Mathematics, Flatiron Institute

Center for Data Science, New York University [ ]



Introduction

O [RNWL25] Emergence and scaling laws for SGD learning of shallow neural networks.

O [BEVW25] Learning quadratic neural networks in high dimensions: SGD dynamics
and scaling laws.
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Neural Scaling Laws & Emergence

7
Neural Scaling Laws [Hestness et al. 17] 6
[Kaplan et al. 20] [Hoffmann et al. 22]. P
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® Unpredictable scaling in skill acquisition. Model scale (training FLOPs) 3



Neural Scaling Laws & Emergence

Question: How do we reconcile the emergent behavior in skill acquisition and the
smooth power-law decay in the cumulative loss?

Hypothesis: Additive Model [Michaud et al. 24] [Nam et al. 24]

(3 Cumulative objective can be decomposed into a large number of distinct
“skills”, the learning of each exhibits abrupt phase transitions.

(3 Juxtaposition of numerous emergent learning curves at different timescales
results in a predictable power-law rate in the cumulative loss.

Cumulative loss

Loss at m-th task\\

Compute

Our goal: theoretical justification of the
additive model hypothesis in the context of

SGD learning of shallow neural network.




Emergence in Gradient-based Feature Learning

Gaussian single-index model: f,(x) = 0.((x,0)), x ~ N(0, 14). |

3 Requires learning the direction 8 € R and link function o. : R — R.

Hermite expansion: 0.(z) = 375 a;He;(2),

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of o, is defined as k = IE(o.) = min{k € N : a # 0}. )

Intuition: the amount of information in the gradient at random initialization.

Theorem ([Ben Arous et al. 21], [Bietti et al. 22], [Damian et al. 23]...)

A two-layer neural network can learn single-index target f, with
information exponent k using n~ T > d®®) samples and SGD steps.



Emergence in Gradient-based Feature Learning

Definition: information exponent [Ben Arous et al. 2021]

The information exponent of o, is defined as k = IE(0.) = min{k € N : a # 0}.

Emergent learning curve

O Search Phase. Online SGD
exhibits extensive loss plateau
\/_a upto T = d* ! steps.

oTVL '
~ g-(k-1)/2 §

[ Descent Phase. Loss sharply
decreases in T = ©(1) .




Scaling Laws for Shallow Neural Networks?

Target Function: Width-M, two-layer neural network

M.
f*(x) = Z am - o((x,0m>), Z a,zn = 1. {Hm}//\{j;l orthonormal.
m=1

O Extensive width. M, =< d“ for o > 0.
e Large number of “tasks’ = infinite-dimensional effective dynamics.

O Large condition number. ayax/amin ~ Poly(M,) .

e Covers power-law decay in second-layer a, < m~", 3 € [0, c0).

Goal: characterize the optimization and sample complexity of SGD training:
e sharp recovery time (emergence) for individual single-index tasks 6.

o power-law scaling in the cumulative mean squared error (MSE) objective.




Prior Results: Well-Conditioned Regime

Theorem ([0SSW24] Sample Complexity of SGD Training)

Assume k > 2, layer-wise (online) SGD training of two-layer neural network

with N neurons achieves ¢ population loss using

n=0g(M.d*1uMd="2),  N=0g(MIT21),

where k = |amax/amin| > 1 is the condition number.

Comparison against prior results

(0 Kernel ridge regression requires n = d” samples.

7 GD-based training for multi-index model requires n > (d°®)) v M? samples.



Prior Results: Well-Conditioned Regime

Width-N Two-layer NN:

O Correlation loss analysis.

e Under small initialization, MSE loss is

fNN(X) =

approximated by correlation (i.e.,

interaction between neurons ignored).

e Correlation loss yields alignment with

teacher neurons.

(3 Layer-wise training.

o After {0,,,}%71 recovered,

second-layer to account for varying anm.

“fine-tune”

e Convex problem with closed-form

solution (under ¢> penalty).

J5 L aio((x, wi) + b)),

hidden layer
¢i = o({x,wi)+bi)

/Wl?
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Prior Results: Well-Conditioned Regime

(3 How does high information exponent k > 2 simplify the analysis?

Correlation loss dynamics:

M
W(t+1) ~ W(t+1) + T]Z am<W(t), 0m>k710m o
m=1 050
.. . . 0.25 ™
= For k sufficiently large, the sum is approximated o *
- bt ¥
by maxm{am(w'?, 6,) 1}, w0
© Decoupled dynamics: each student neuron o Y
converges to 8, with largest initial overlap. h )

(3 Why can't we handle large condition number k = amax/amin > 17

e At initialization (w(®,0,,)2 < d~* with high probability.

® All student neurons converge to large am directions, unless N ~ exp(M.). 10



Decoupling via MSE Loss + Simultaneous Training

(3 Student model: 2-homogeneous two-layer neural network

N
F(x) = lwilly - o (Ox, wi) /[ will)-
i=1
O Online SGD training: at time t, compute MSE gradient update

wi(t +1) = wi(t) = 1V, (f(x) = F(x))?, x~N(0,1q).

Single-stage training! No layer-wise learning & reinitialization, etc. )

How does this resolve exponential dependence on condition number 7

e Tangent & radial dynamics. Starting from small initialization, SGD first “rotates”
wi;(t) to align with one of the target neurons 0, after which ||w;(t)|| — am rapidly.

e “Automatic deflation”. After 0, is recovered, it gets "deleted” from the MSE loss,

so that subsequent student neurons can converge to other target directions. 1



Main Theorem: Complexity of SGD Learning

Theorem ([RNWL25] Complexity of SGD learning)

Assume k > 2 and M, < d°1, m < M.,. If we train a student network with

N = C:)(rﬁ) neurons using online SGD with n = dk/zi

Do (M then w.h.p.,

3 If m < m, alignment with 8,, emerges at T, =< a;'-n~td*/2~1.

3 All directions up to m are learned at n =< T = a=?d* poly(M,) .

Corollary: ignoring logarithmic factors, achieving small population loss (i.e., learning
all tasks) requires N < M., neurons and n =< T < a_2d* *poly(M..).

min




Neural Scaling Laws for MSE Loss

Corollary ([RNWL25] Emergence & Scaling Laws)

Assume a,, < m~5 for 3 > 1/2 and fixed learning rate 1), then we have

1. Emergence: the m-th teacher neuron is learned at time t -1 ~ d*/?>=1mF .

123
B

2. Scaling law: population MSE decays L(t) ~ N*=27 v (t - ndl’k/z)

Cumulative loss
1—253

L(t)y ~t 7

A\

Loss at m-th task \
(emergence at t ~ m?®)

Optimization time t 13



Neural Scaling Laws for MSE Loss

(1 N'-27 — approximation barrier, determined by the student network width.

1-28
B

a (tndlfk/z) — optimization error, determined by number of SGD steps.
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Discretizing Properly

Note: the continuous-time (or constant-n) rate can be misleading!

Adaptive learning rate for m-th task. Consider learning the top-m neurons.
[ ]

23

Sample complexity: under this learning rate, for the first m neurons
1-28

0~ (Grpom)

15



Proof Sketch

e Decoupled gradient dynamics.
Let w,(,) denote the neuron that eventually converged to direction 8, and
mp,q(t) = (wp(t)/
e Claim 1 - decoupling. When all m,z(/))_q (g # p) are small, the learning of

wp(t)||,04) measures the overlap at time t.

different directions can be approximately decoupled.

e Claim 2 - sharp transitions. Since the norm of w, grows rapidly after
alignment is achieved, all mipm (g # p) remain small when the g-th
direction is recovered by w, — after which 8, no longer affects the learning

dynamics (“automatic deflation”).

e From gradient flow to online SGD.
e Martingale decomposition in [Ben Arous et al. 21] 4 a refined stochastic
induction argument from [Ren & Lee 24].

e “Unstable” discretization that couples the online SGD dynamics for learning

the top-p teacher neurons.

16



SGD Learning of Quadratic Neural Networks

100 e

Question: how do we handle the lower
information exponent k =2 setting? J

Population loss

Empirical observation: the same emergence &

—— Small width
Large width siope = -0
10| ==+ Optimal slope ~.

scaling law phenomenon appears in SGD train-

ing of quadratic neural networks.

101 1012 10 104
Total compute (FLOPs)

® Learning of different teacher directions 8, no longer decoupled.

© For quadratic nonlinearity o(z) = z> — 1, the population dynamics admits
closed-form description (see e.g., [Martin et al. 2023]).

Claim. Dynamics of the overlap Gram matrix G(t) = @ T U(t)U(t) T © € RM-*M-
where W = UQ? is the polar decomposition, is given by a Matrix Riccati ODE,

0:G(t) = ‘%W(AG(t) + G(t)A — 2G(t)AG(t)), where A = a;. -



Risk Scaling of Gradient Flow

Theorem ([BEVW25] Time Complexity of Gradient Flow)

Assume o(z) = z2°—1, M, < d*, a € [0,1), and am < m~B. Then as d — oo,

A 8>3 Let N=04(1). L(t-logd) ~ 70 v N*=28

1-23
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(a) Light-tailed (a > 1/2). (b) Heavy-tailed (o < 1/2). 18
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Discretization and Sample Complexity

Algorithm: Stage-wise training with online SGD

Phase I: Online SGD on Stiefel manifold (feature learning)
fort =0 to T; do
W:=W;_ 1 —nVgL(We_1; (x¢,¥1)) 5 // Online SGD step

—_ — T~ \—1/2
W;: = Wt<Wt Wz) ; // Polar retraction
end

Phase IlI: Closed-form for radial component (fine-tuning)
winal —w,Q,, Q. = argmin 37, L(WeQ; (Xt4i, Yeri) s // closed-form

QeRNXN

(3 Phase I: Online SGD to recover the M.-dimensional subspace spanned by f..
e Discretizes the directional component of gradient flow; dominates the
statistical and computational complexity.

e Challenge: need to control Martingale terms in operator norm since M, > 1.

O Phase Il: “Fine-tuning” on M,-dimensional subspace (artifact of Stiefel SGD ®).

e Closed-form solution; required sample size scales as n’ = ©(N?) < Nd. 1o



Discretization and Sample Complexity

Theorem ([BEVW25] Sample Complexity of Online SGD)
To track the gradient flow risk curve, it suffices to set the SGD step size as follows.

a 8> % set ' < dpolylog(d); hence achieving 04(1) population MSE requires
n~ T ~ dpolylog(d).

a <

(SIS

- set ' < dMpolylog(1 + Mi*) this yields

~ T~ 1+8 d
ne T~ dM polylog(l n M*).

3 B> 21 n=86(d) - information theoretically optimal up to polylog factors.

O =0 n= (:)(dM*) — optimal complexity for estimating rank-M.,. subspace.
e M, = 1: phase retrieval. Log factors in the time and sample complexity.

e « — 1: proportional regime. Polylogarithmic factors start to diminish.



Conclusion

1

SGD learning of two-layer NN Task 105

Task 2 05
0

1

e Recovery of individual neurons Task 305

Sum

il

Cumulative objective

0

exhibits sharp transition (emergence).

e Cumulative MSE loss has predictable

1

power-law scaling.

Task r 05

115
Time t Time t

Future Directions

3 Anisotropic input: x ~ N(0,E), where £ = > Nviv], A < i,

[ ]
O k =1 (e.g., ReLU) or heterogeneous information exponents?

0 Beyond additive structure = scaling laws for compositional generalization?
21
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