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High-dimensionality of Modern ML Systems

Modern ML tasks require searching over a high-dimensional parameter space.

Curse of dimensionality? Larger neural networks often achieve better performance.

LLM parameter count (Hugging Face blogpost)

Overparameterization: # parameters > #training data.
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High-dimensionality of Modern ML Systems

Modern ML tasks require searching over a high-dimensional parameter space.

Curse of dimensionality? Larger neural networks often achieve better performance.

Understanding the success of deep learning

(i) Optimization: standard gradient-based methods work, despite the non-convexity.

• benefit of overparameterization (NTK, mean-field, etc.)

(ii) Generalization: model generalizes well, despite the overparameterization.

• implicit regularization, benign overfitting.

(iii) Why neural networks? NN often outperforms classical methods (e.g., kernels).

• adaptivity, representation (feature) learning.

My research: quantitative understanding of (i)-(iii) via high-dimensional statistics.
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Mathematical Models for High-dimensional Problems

Intuition: theoretical analysis may simplify if we take the dimensionality to infinity.

Scaling 1 – Large Width Limit

For convex loss L, learning is

/ non-convex w.r.t. w i

, convex w.r.t. distribution p

Perspective: study optimization
in the space of measures
(Wasserstein gradient flow,

functional inequalities (LSI), etc.)

❐ Convergence rate of mean-field Langevin dynamics and propagation of chaos [NWS22][SWN23]
❐ Learnability guarantees for low-dimensional target functions [SWO+23][NOS+23]
❐ New algorithms for optimization in the space of measures [NWS21] [OSN+22] [NOW+23]
❐ ......
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Mathematical Models for High-dimensional Problems

Intuition: theoretical analysis may simplify if we take the dimensionality to infinity.

Scaling 2 – Proportional Asymptotic Limit

Diverging dimensionality & fixed aspect ratio.

• Captures the overparameterized regime
(by setting γ > 1)

Performance of simple ML models can be
precisely analyzed via random matrix theory
(the study of large-dimensional matrices with

certain random structures)

This talk: two examples of precise analysis using random matrix theory (RMT).
(i) optimal regularization in linear regression. (ii) feature learning in neural network.
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Precise Analysis of Learning in High Dimensions

What are the advantages of a precise analysis?

• Enables accurate comparison between estimators/algorithms.
❐ positive vs. negative ridge penalty, gradient descent vs. natural gradient, etc.

• Captures refined properties of the learning curve.
❐ phase transitions, (non-)monotonicity, etc.
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Ridge Regression in High Dimensions

Problem Setting & Assumptions

• Data Generation: yi = x⊤
i β∗ + εi , 1 ≤ i ≤ n. x i ∈ Rd .

i.i.d. label noise satisfies E[ε] = 0, Var(ε) = σ2
ε .

• Random Design: x i
i.i.d.∼ N (0,Σ). Also holds for x i with bounded (4+ϵ) moment

• Signal (Ground Truth): β∗ can be both fixed or random (i.e., E[β∗β
⊤
∗ ] = Σβ)

• Proportional Asymptotics: n, d → ∞, d/n → γ ∈ (0,∞).

Ridge regression estimator: β̂λ =
(
X⊤X+λI

)†
X⊤y .

• Goal: compute the prediction risk (test error) R(λ) = E(y − x⊤β̂λ)
2.

Remark: When λ ≥ 0, β̂λ = argminβ
∑n

i=1(yi − x⊤
i β)

2 + λ∥β∥2 (Gaussian prior)
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Asymptotic Risk Formulae

Theorem ([WX20] Precise generalization error of ridge regression)

The test error admits a bias-variance decomposition R(λ) = B(λ)+V(λ), where

B(λ) p→ ∂κλ
∂λ

· κ2
λ

〈
β∗,Σ(Σ+ κλI )−2β∗

〉
, V(λ) p→ σ2

ε

∂κλ
∂λ

,

and κλ ≥ λ is the effective regularization given by the non-negative solution of
1
n Tr

(
Σ(Σ+ κλI )−1

)
= 1 − λ

κλ
.

• Bias B(λ): learning of signal β∗. • Variance V(λ): "overfitting" to label noise.

Given eigendecomposition Σ =
∑

i λiu iu⊤
i , prediction risk R(λ) depends on:

❐ Capacity condition: eigenvalues of the population covariance {λi}di=1.

❐ Source condition: projection of signal (teacher) β∗ onto the feature eigenbasis
{ρi}di=1, where ρi = ⟨β∗, u i ⟩.
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Alignment between Features and Signal

• Aligned feature & signal: large λi ⇔ large ⟨β∗, u i ⟩

, Features are well-engineered ⇒ easy problem

• Misaligned feature & signal: large λi ⇔ small ⟨β∗, u i ⟩

/ Features are uninformative ⇒ hard problem

[xxT]
aligned *
misaligned *

Theorem ([WX20] Sign of Optimal Ridge Penalty λopt)

Recall that γ = d/n.

❐ γ < 1 (underparameterized): λopt ≥ 0 in all cases.

❐ γ > 1 (overparameterized): the sign of λopt depends on the alignment
between the features and the signal.
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The “Negative Ridge” Phenomenon

Corollary ([WX20] Sign of λopt in the Overparameterized Regime)

❐ Negative λ is beneficial under alignment (informative features); hence
interpolation (λ = 0) can be optimal even if σε > 0.

❐ Positive λ is beneficial under misalignment (hard problem), even in the
absence of label noise (σε = 0).
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Regularization Suppresses “Multiple Descent”

Without appropriate regularization, R(λ) may exhibit multiple peaks...

Theorem ([WX20] Monotonicity of R(λopt))

Given E[β∗β
⊤
∗ ] ∝ I (isotropic prior), the optimally regularized prediction risk

R(λopt) is a decreasing function of γ−1 = n/d ∈ (0,∞).
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Message: if we tune λ, more
training data always helps
the test performance.
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Implication I: Implicit Bias of Optimizers

Update rule: θt+1 = θt − ηP(θt)∇θtL(θt), t = 0, 1, . . ..

Geometric Intuition: P alleviates pathological curvature and speed up optimization.

Figure from Xanadu blog post.

Question: in the interpolation setting (i.e. absence of explicit regularization),
how does preconditioning influence the generalization performance?
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Implicit Bias in Overparameterized Linear Regression

Theoretical Setting: preconditioned gradient descent (flow) on the
overparameterized least squares objective: L(β) = 1

n∥y − Xβ∥2
2.

Implicit Bias (t → ∞):

• Gradient descent: min ℓ2 norm solution.

• Preconditioned GD: for time-independent and
full-rank P, min ∥β∥P−1 norm solution.

Example.

Natural gradient descent with population Fisher : P = Σ−1

GD

Precond.
 GD

[xx ]
P 1

y = X
initialization

• Goal I: use the asymptotic risk formulae (taking λ→ 0) to precisely
compare the generalization of GD vs. NGD.

• Goal II: validate our predictions in neural network experiments.
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Comparison of Generalization Performance

Theorem ([ABG+21] Prediction Risk of GD vs. NGD)

❐ Variance limλ→0 V(λ): NGD (population, P = Σ−1) is optimal.

❐ Bias limλ→0 B(λ): GD generalizes better when signal is isotropic (Σβ= I );
NGD generalizes better under misalignment (“difficult problem”).

Remark: bias-variance tradeoff achieved by “interpolating” between optimizers.

Two-layer MLP: student-teacher setup (CIFAR-10)
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Implication II: Beyond Gaussian Features

Question: does our risk formula have predictive power in practical settings,
e.g., neural network representations?

• Decomposition of kernel: k(x , y) =
∑

i λiϕi (x)ϕi (y).

• Decomposition of target function: f ∗(x) =
∑

i ρiϕi (x), ρi = ⟨ϕi , f
∗⟩L2 .

• Leap of faith: estimate {λi , ρi}∞i=1 from data, and plug in the risk formulae.

Universality: RMT prediction empirically
accurate for many feature maps, including
trained neural network features.

Observation: trained NN achieves lower risk

⇒ advantage of representation learning.

❐ Spoiler: this benefit will be precisely analyzed! [Loureiro et al. 2021]
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Two-layer Neural Network

fNN(x) =
1√
N

N∑
i=1

aiσ(x⊤w i ) =
1√
N

a⊤σ(W⊤x).

• Trainable parameters: W ∈ Rd×N , a ∈ RN .

• Element-wise nonlinearity: σ : R → R.

Proportional asymptotic limit:
n, d ,N → ∞, n/d → ψ1, N/d → ψ2,

where ψ1, ψ2 ∈ (0,∞).

• Increase ψ1 ⇒ larger sample size.
• Increase ψ2 ⇒ overparameterization.

[x ]1

[x ]2

[x ]d

ϕN

ϕ3

ϕ2

ϕ1w1,1w1,1

w1,2w1,2

w1,dw1,d

y

a1a1

a2a2

a3a3

aNaN

... ...

input
x ∈ Rd

hidden layer
ϕi = σ(⟨x ,w i ⟩)

output
y ∈ R

Motivation: rigorously show that the learned representation (via gradient
descent) achieves better performance in the proportional limit.

16



Prior Works: Asymptotics of Random Features Model

Fix 1st layer W at initialization, learn 2nd layer a
⇒ random features (RF) model.

, Prediction risk precisely characterized in the
proportional regime via random matrix theory.

/ The (nonlinear) RF estimator cannot even
outperform linear functions on the input... 100 101 102
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P>1 is the projector orthogonal to
constant & linear functions in L2(Px )Where does this gap come from?

Feature (representation) learning!

❐ When W is optimized, NN can “adapt” to data and learn useful features.

• Mei and Montanari, 2019. The generalization error of random features regression: Precise asymptotics and
double descent curve.

• Gerace et al., 2020. Generalisation error in learning with random features and the hidden manifold model.
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Feature Learning via One Gradient Descent Step

“Early Phase” Feature Learning: Does the first gradient descent step on
the first-layer W already learn useful representations?

• One-step GD on 1st Layer. Gradient update W 1 = W 0 + η
√
N · G , where

G = −∇W

[
1
n

n∑
i=1

(
yi − fNN(x i )

)2

]
=

1
n

X⊤
[( 1

√
N
(y−fNN(X ))a⊤

)
⊙ σ

′(XW 0)

]
.

• Ridge Regression for 2nd Layer. Regression using trained kernel features:

âλ = argmina

{
1
n
∥ỹ −Φa∥2 +

λ

N
∥a∥2

}
, Φ :=

1√
N
σ(X̃W 1) ∈ Rn×N .

Denote f λGD(x) =
1√
N
â⊤
λ σ

(
W 1

⊤x
)
, prediction risk: RGD(λ) = R(f λGD).

Goal: Precise analysis of RGD(λ) to show its improvement over the initialized
RF RRF(λ), and potentially over the kernel lower bound ∥P>1f

∗∥2
L2 .
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Our Results: Precise Asymptotics of Feature Learning

• Student-teacher Setup. yi = f ∗(⟨x i ,β∗⟩) + εi , where x i
i.i.d.∼ N (0, I ).

• Gaussian Initialization. [W 0]ij
i.i.d.∼ N (0, 1/d), [a]j

i.i.d.∼ N (0, 1/N).

Small lr (“lazy” regime): η = Θ(1) ⇒
∣∣[W 1 − W 0]ij

∣∣ ≪ ∣∣[W 0]ij
∣∣

Large lr (µP scaling): η = Θ(
√
N) ⇒

∣∣[W 1 − W 0]ij
∣∣ ≍ ∣∣[W 0]ij

∣∣
❐ Small lr η=Θ(1) : trained kernel always

improve upon the initial RF estimator, but
the model remains "linear".

❐ Large lr η=Θ(
√
N) : regression on trained

features can learn certain nonlinear f ∗.
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• Jacot et al, 2018. Neural tangent kernel: convergence and generalization in neural networks.
• Yang and Hu, 2021. Feature learning in infinite-width neural networks. 19



A Spiked Model for the Trained Weight Matrix

Challenge: learned W 1 no longer i.i.d.; can we still apply RMT tools?
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• σ = tanh, f ∗(x) = ReLU(⟨x ,β∗⟩).
• Teacher β∗ ∝ [−1d/2; 1d/2].

Observation: after one feature learning step on the first-layer W :

• The bulk of the spectrum of W 1 remains unchanged

• A spike (×) appears in W 1, which aligns with signal β∗
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η = Θ(1) – Precise Analysis via Gaussian Equivalence

Intuition – Universality: replace nonlinear NN features with linear Gaussian
features with matching first two moments does not change the risk.

• NN (nonlinear) : ϕNN(x) =
1√
N
σ(W⊤x).

• GE (linear) : ϕGE(x) =
1√
N

(
µ1W⊤x + µ2z

)
, z ∼ N (0, I ).

where µ1 = E[zσ(z)], µ2 =
√

E[σ(z)2]−µ2
1 ⇒ E

[
ϕNNϕ

⊤
NN

]
= E

[
ϕGEϕ

⊤
GE

]
Theorem ([BES+22] Gaussian Equivalence for Trained Features)

After one feature learning step on W with small learning rate η = Θ(1),

|RGD(λ)−RGE(λ)| = od,P(1), for λ > 0.

Implications of Gaussian Equivalence (GET):
• We may equivalently compute RGE, which can be handled via RMT tools ,
• The nonlinear NN model achieves the same performance as a linear model /
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Precise Characterization of Feature Learning

Theorem ([BES+22] Benefit of Feature Learning)

The prediction risk difference δ := limn,d,N→∞ RRF(λ)−RGD(λ) is

• a non-negative function of η, λ, ψ1, ψ2 ∈ (0,+∞);

• an increasing function with respect to learning rate η.

Provable improvement over the initial RF model!

Observations:

• For η = Θ(1), feature learning always helps.

• Larger step size ⇒ greater improvement.

• Improvement also limited by the GET, i.e.,
the learned kernel is still “linear” . 10 1 100 101 102
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σ = ReLU, σ∗ = erf. 22



η = Θ(
√
N) – Upper Bound via Nonparametric Analysis

Sufficiently large η ⇒ W 1 travels far away from initialization.

, learned kernel can be “nonlinear”. / Gaussian equivalence no longer holds.

Theorem ([BES+22] Upper Bound on Prediction Risk)

After one GD step on W with η = Θ(
√
N), for appropriate λ and ψ1 > ψ∗,

RGD(λ) ≤ 10τ∗ +Θ(ψ−1
1 ), w .h.p.,

where constant τ∗ depends on σ, f ∗, but not the specific value of step size η.

If τ∗ ≪ ∥P>1f
∗∥2

L2 , one feature learning
step can outperform kernel lower bound:

• σ = f ∗ = tanh: RGD(λ) < ∥P>1f
∗∥2

L2

• σ = f ∗ = erf: RGD(λ) = O(d/n)
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Conclusion and Future Directions

Random matrix theory allows us to characterize

❐ Precise conditions that determine the sign of optimal ridge penalty.

❐ Benefit of representation learning in the “early phase” of gradient descent.

Open Questions

• Universality: Under what conditions on the
representation do we expect the RMT
predictions to hold?

• Beyond Universality: What theoretical
tools can we employ when the RMT
predictions fail?
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Conclusion and Future Directions

Deep learning phenomena → interesting mathematical problems

❐ New models of (nonlinear) random matrix theory.
• properties of neural net representation, beyond the proportional regime, ...

❐ What functions can be efficiently learned by neural network + gradient descent?
• sparsity & low-dimensional structure, information exponent, ...
• the role of architecture (depth, normalization, etc.) and optimization

method (stochastic gradient, preconditioning, etc.)

Theoretical advances → principled guidance in practical settings

❐ How do we scale hyperparameters in the overparameterized setting?
• selection of learning rate, regularization parameters, etc.

❐ “neural scaling laws” beyond the kernel regime.
• How many samples, parameters, and optimization steps is required to

achieve a desired test performance?
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Conclusion

Thank you! Happy to take questions:)

Shun-ichi Amari Jimmy Ba Murat A. Erdogdu Roger Grosse Xuechen Li

Atsushi Nitanda Taiji Suzuki Zhichao Wang Ji Xu Greg Yang
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