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High-dimensionality of Modern ML Systems

Modern ML tasks require searching over a high-dimensional parameter space.

Curse of dimensionality? Larger neural networks often achieve better performance.
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High-dimensionality of Modern ML Systems

Modern ML tasks require searching over a high-dimensional parameter space.

Curse of dimensionality? Larger neural networks often achieve better performance.

Understanding the success of deep learning

(i) Optimization: standard gradient-based methods work, despite the non-convexity.

(i) Generalization: model generalizes well, despite the overparameterization.

(iii) Why neural networks? NN often outperforms classical methods (e.g., kernels).

My research: quantitative understanding of (i)-(iii) via high-dimensional statistics. )




Mathematical Models for High-dimensional Problems

Intuition: theoretical analysis may simplify if we take the dimensionality to infinity.

Scaling 1) — Large Width Limit

For convex loss L, learning is
a({ -, w;)

N
f(x)=%26(<x,wi)) ® non-convex w.r.t. w;
' ®© convex w.r.t. distribution p
N — o
. ol w) Perspective: study optimization

in the space of measures

Convergence rate of mean-field Langevin dynamics and propagation of chaos
Learnability guarantees for low-dimensional target functions

New algorithms for optimization in the space of measures



Mathematical Models for High-dimensional Problems

Intuition: theoretical analysis may simplify if we take the dimensionality to infinity.
Scaling (2) — Proportional Asymptotic Limit

n,d — co,d/n =y € (0,00) Diverging dimensionality & fixed aspect ratio.

( fXP) e Captures the overparameterized regime
X = (by setting v > 1)

< H Performance of simple ML models can be
precisely analyzed via random matrix theory
\ n

d——
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This talk: two examples of precise analysis using random matrix theory (RMT).
(i) optimal regularization in linear regression. (ii) feature learning in neural network.




Precise Analysis of Learning in High Dimensions

What are the advantages of a precise analysis?

e Enables accurate comparison between estimators/algorithms.

a
e Captures refined properties of the learning curve.
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Ridge Regression in High Dimensions

Problem Setting & Assumptions

e Data Generation: y; =x; 3, +¢,1<i<n. x; R’
i.i.d. label noise satisfies E[¢] = 0, Var(e) = o2.

Random Design: x; i'iA'ij'./\f(O,):).

Signal (Ground Truth): 8, can be both fixed or random

Proportional Asymptotics: n,d — oo, d/n — v € (0, 0).

2 T
Ridge regression estimator: (3, = (XTX—i—)\I) XTy.

e Goal: compute the prediction risk (test error) R(\) = E(y — x' 3, ).

Remark: When A >0, B, = argming 37, (vi — x;' 8)> + |81



Asymptotic Risk Formulae

Theorem ([WX20] Precise generalization error of ridge regression)

The test error admits a bias-variance decomposition R(\) = B(A\)+V()\), where

0 0
B 5 S (B EE+mN) 2., V) B 22,
and kx > )\ is the effective regularization given by the non-negative solution of

I (E(E+ml)™) =1- 2.

e Bias B(\): learning of signal 3,. e Variance V(\): "overfitting" to label noise.

Given eigendecomposition X = 3", \juju; , prediction risk R(\) depends on:

(3 Capacity condition: eigenvalues of the population covariance {\;}¢_;.

O Source condition: projection of signal (teacher) 3, onto the feature eigenbasis

{pi}a, where pi = (B, u7).




Alignment between Features and Signal

o Aligned feature & signal: large \; < large (3,, u;) .
B misaligned B+

® Features are well-engineered = easy problem

e Misaligned feature & signal: large \; < small (3., u;) -

® Features are uninformative = hard problem

Theorem ([WX20] Sign of Optimal Ridge Penalty \opt)

Recall that v = d/n.

O ~ < 1 (underparameterized): )\, > 0 in all cases.

O ~ > 1 (overparameterized): the sign of A,y depends on the alignment
between the features and the signal.




The “Negative Ridge” Phenomenon

Corollary ( Sign of Aopt in the Overparameterized Regime)
(O Negative ) is beneficial under alignment ; hence
interpolation (A = 0) can be optimal even if o. > 0.

(0 Positive \ is beneficial under misalignment , even in the
absence of label noise (0. =0).
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Regularization Suppresses “Multiple Descent”

Without appropriate regularization, R(\) may exhibit multiple peaks...

Theorem ([WX20] Monotonicity of R(Aopt))

Given E[,B*,B*T] o I , the optimally regularized prediction risk
R(Aopt) is a decreasing function of yv~* = n/d € (0, 00).

A=0
v Aopt = Y0?/C

Message: if we tune A, more

RO training data always helps

10° the test performance.
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Implication I: Implicit Bias of Optimizers

Update rule: 6,1 = 0, —nP(0:)Ve, L(0:), t=0,1,.... J

Geometric Intuition: P alleviates pathological curvature and speed up optimization.

L(¢u‘b7.)
L(6,6,)

N\,
i

Figure from Xanadu blog post.

Question: in the interpolation setting ,
how does preconditioning influence the generalization performance?
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Implicit Bias in Overparameterized Linear Regression

Theoretical Setting: preconditioned gradient descent (flow) on the
overparameterized least squares objective: L(3) = 1|y — Xﬁ||§.

Implicit Bias (t — o0):

e Gradient descent: min /¢, norm solution.
- y=X6

e Preconditioned GD: for time-independent and
full-rank P, min |||/ p-1 norm solution.

Example.
Natural gradient descent with population Fisher: P = X!

e Goal I: use the asymptotic risk formulae to precisely
compare the generalization of GD vs. NGD.

e Goal Il: validate our predictions in neural network experiments.
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Comparison of Generalization Performance

Theorem ([ABG+21] Prediction Risk of GD vs. NGD)

(3 Variance limy_.o V(\): NGD (population, P = X7') is optimal.

O Bias limx_,0 B()\): GD generalizes better when signal is isotropic (£g=1);
NGD generalizes better under misalignment

Remark: bias-variance tradeoff achieved by “interpolating” between optimizers.

Two-layer MLP: student-teacher setup (CIFAR-10)
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Implication Il: Beyond Gaussian Features

Question: does our risk formula have predictive power in practical settings,
e.g., neural network representations?

e Decomposition of kernel: k(x,y) = >, Xigi(x)pi(y).
e Decomposition of target function: f*(x) = . pidi(x),
e Leap of faith: estimate {)\;, pi}Z; from data, and plug in the risk formulae.

0.6

Universality: RMT prediction empirically Eoa
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o [Loureiro et al. 2021]
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Two-layer Neural Network

N hidden layer
1 T 1 T T ! Y
fun(x) = — aio(x wj) = ——a o(W x). L )
VA2 VN input 7= (o wid)
x € R?
e Trainable parameters: W € RV a ¢ RV, .
_Wis1
e Element-wise nonlinearity: o : R — R. W / \
172
/ o a; output
. . NG\ ER
Proportional asymptotic limit: @ Wi.d 23
n,d,N — oo, n/d — 1, N/d — 1)y, : ¢3 —a3—~
where ’(ﬂl, Py € (07 OO) ‘ a/\//
e Increase Y1 = larger sample size. m b /

Increase v, = overparameterization.

Motivation: rigorously show that the learned representation (via gradient
descent) achieves better performance in the proportional limit.
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Prior Works: Asymptotics of Random Features Model

Fix 1st layer W at initialization, learn 2nd layer a - ::8;4
0 —
= random features (RF) model. L - P I
© Prediction risk precisely characterized in the g
T
proportional regime via random matrix theory. s X\\
N
® The (nonlinear) RF estimator cannot even 107 =
outperform linear functions on the input... 100 1% 102
Yr=n

Where does this gap come from?

Feature (representation) learning!

O When W is optimized, NN can “adapt” to data and learn useful features.

o Mei and Montanari, 2019. The generalization error of random features regression: Precise asymptotics and
double descent curve.
o Gerace et al., 2020. Generalisation error in learning with random features and the hidden manifold model
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Feature Learning via One Gradient Descent Step

“Early Phase” Feature Learning: Does the first gradient descent step on

the first-layer W already learn useful representations?

e One-step GD on 1st Layer. Gradient update W3 = Wy + nv/N - G, where

i=1

vy [% - fNN(X,.))z} _

e Ridge Regression for 2nd Layer. Regression using trained kernel features:
1
—0
v N

s (1, A ; .
an :argmlna{E||y*¢a||2+ﬁ||a||2}, [ORES (XW;[) eR xN

Denote 72y (x) = ﬁéIU(WJx), prediction risk: Rap(A) = R(fp)-

Goal: Precise analysis of Rap(\) to show its improvement over the initialized
RF Rge(A), and potentially over the kernel lower bound ||P>1f*||f2.
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Our Results: Precise Asymptotics of Feature Learning

e Student-teacher Setup. y; = *((x;,3.)) + &i, where x; R N(O, 1).
e Gaussian Initialization. [Wo]; "<" NV(0,1/d), [a]; "K' N(0,1/N).

Small Ir :n=0(1) = |[Wi— Wolj| < |[Wolj]
Large Ir e @(\/N) = ’[Wl = WO]U-’ = ’[Wo]u‘ ’

3 Small Ir n=0©(1) : trained kernel always
improve upon the initial RF estimator, but

the model remains "linear".

initialized CK n

v n=6(1) =
3 Large Ir n=0O(\/N) : regression on trained = n=o(/W) ‘\'\-\_\-\l

prediction risk

. . —== IPaaf IR
features can learn certain nonlinear f*. s

103 104
sample size n

e Jacot et al, 2018. Neural tangent kernel: convergence and generalization in neural networks.
® Yang and Hu, 2021. Feature learning in infinite-width neural networks
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A Spiked Model for the Trained Weight Matrix

Challenge: learned W1 no longer i.i.d.; can we still apply RMT tools?

Alignment of u; and B+«

0.4 .. . .
Blue: empirical simulation
go3 Red: analytic prediction
z (BBP Phase Transition)
go2

o
i

o
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Eigenvalues

Observation: after one feature learning step on the first-layer W:
e The bulk of the spectrum of W7 remains unchanged

e A spike (x) appears in W1, which aligns with signal 3*
20



n = ©(1) — Precise Analysis via Gaussian Equivalence

Intuition — Universality: replace nonlinear NN features with linear Gaussian

features with matching first two moments does not change the risk.
e NN (nonlinear) : ¢nn(x) = ﬁa(WTx).
o GE (linear) : ¢pgp(x) = ﬁ(ul W'x+ uzz), z~N(0,1).

= E[¢NN¢§N} = E[¢GE¢£E]

Theorem (|[BES+22] Gaussian Equivalence for Trained Features)

After one feature learning step on W with small learning rate n = ©(1),
IRep(A) — Ree(A)| = 0a,p(1), for A > 0.

Implications of Gaussian Equivalence (GET):
e We may equivalently compute Rgg, which can be handled via RMT tools ©

e The nonlinear NN model achieves the same performance as a linear model ®
21



Precise Characterization of Feature Learning

Theorem (|[BES-+22] Benefit of Feature Learning)

The prediction risk difference 6 := limp g N—yoo RRF(A) — Rap(A) is
e a non-negative function of n, A, 11,1 € (0, +00);

e an increasing function with respect to learning rate 1.

Provable improvement over the initial RF model!

10° —— initial CK

n-o

- IPaaf' I

Observations:

e For n = ©(1), feature learning always helps.

e larger step size = greater improvement.

prediction risk

e Improvement also limited by the GET, i.e.,
the learned kernel is still “linear” . i

o = RelLU, o* = erf. 22



n = ©(v/N) — Upper Bound via Nonparametric Analysis

Sufficiently large = W, travels far away from initialization.

® learned kernel can be “nonlinear’. & Gaussian equivalence no longer holds.

Theorem (|[BES+22] Upper Bound on Prediction Risk)

After one GD step on W with 1 = ©(\/N), for appropriate A and 11 > 1)*,
Rep(N) < 107" +O(¢; '), w.h.p.,

where constant 7" depends on o, f*, but not the specific value of step size 7).

10°f.

If 7 < \|P>1f*||i2 , one feature learning

>
step can outperform kernel lower bound: < b
f) o
o g) e~ n=0(1) 004

n=0(N)
¢ o= —af: Rao(N) = O(d/n) N

104
sample size n 23




Conclusion and Future Directions

Random matrix theory allows us to characterize

(3 Precise conditions that determine the sign of optimal ridge penalty.

(3 Benefit of representation learning in the “early phase” of gradient descent.

Open Questions

o
X
=
o

e Universality: Under what conditions on the
representation do we expect the RMT

prediction risk

4x107!
predictions to hold?
3x107!
e Beyond Universality: What theoretical
tools can we employ when the RMT 2x107
20 40 60 80
predictions fail? number of steps ¢

Failure case of RMT prediction.
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Conclusion and Future Directions

Deep learning phenomena — interesting mathematical problems

O New models of (nonlinear) random matrix theory.
[ ]

0 What functions can be efficiently learned by neural network + gradient descent?
[ ]

Theoretical advances — principled guidance in practical settings

(0 How do we scale hyperparameters in the overparameterized setting?
]
O “neural scaling laws” beyond the kernel regime.
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Conclusion

Thank you! Happy to take questions:) J

ol 2

Shua—ichi Amari

Xuechen Li

=
N
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Atsushi Nitanda Taiji Suzuki Greg Yng ‘

Zhichao Wang
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