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Introduction

• "High-dimensional asymptotics of feature learning: how one gradient step improves the
representation", NeurIPS 2022 (short version).

• "Learning in the presence of low-dimensional structure: a spiked random matrix
perspective", NeurIPS 2023.

• "Gradient-based feature learning under structured data", NeurIPS 2023.
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Introduction: Learning under Structured Data

Target function: low-dimensional polynomial f∗ : Rd → R

Single-index target (teacher)1: f∗(x) = σ∗(⟨x ,β∗⟩), x ∼ N (0,Σ).

• Link function σ∗ : R→ R is a degree-p polynomial (with EN (0,1)[σ∗] = 0).

Input Data: high-dimensional feature with low-dimensional structure

Spiked covariance data: Σ = I + θµµ⊤, ∥µ∥ = 1, θ ≍ dβ.

• High-dimensionality: large amount of input features (d →∞).

• Low-dimensional structure: Larger spike θ ⇒ stronger anisotropy.

1β∗ is normalized such that E⟨x,β∗⟩
2 = 1, and σ∗ is dimension-free.
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Introduction: Spiked Random Matrix Model

Spiked Random Matrix: low-dimensional signal + high-dimensional noise.
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• Bulk: uninformative &
high-dimensional random noise.

• Spike: informative &
low-dimensional structure.

• Johnstone 2001. On the distribution of the largest eigenvalue in principal components analysis
• Baik et al. 2005. Phase transition of the largest eigenvalue for non-null complex sample covariance matrices
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Introduction: Summary of Results

• Training. Empirical risk minimization (potentially ℓ2-regularized):

Rn(f ) =
1
n

n∑
i=1

(f (x i )− yi )
2, yi = f∗(x i ) + εi ,

• Test. Prediction risk: R(f ) = Ex [(f (x)− f∗(x))2] = ∥f − f∗∥2L2(Px )
.

Overview: complexity of gradient-based feature learning

❐ interplay between structured data and statistical & optimization efficiency.

1. one-step feature learning : sharp guarantees in the proportional regime.

2. (normalized) gradient flow for partially aligned data.

3. mean-field neural networks for (anisotropic) k-parity classification.
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Student Model I: Kernel Ridge Regression

• Random features regression. Given ϕRF(x) =
1√
N
σ(W⊤

0 x) ∈ RN ,

f̂RF(x) = ⟨ϕRF(x), â⟩, â = argmina

{
1
n

∑n
i=1(yi − ⟨ϕRF(x i ), a⟩)2 + λ

N
∥a∥2

}
.

• Kernel ridge regression. Given inner-product kernel: k(x , y) = g
(

⟨x,y⟩
d

)
,

f̂ker = argmin
f∈H

{1
n

n∑
i=1

(yi − f (x i ))
2 + λ∥f ∥2H

}
⇒ f̂ker(x) = k(x ,X )⊤(K + λI )−1y .

Fixed feature map =⇒ no representation learning.

[Louart, Liao, and Couillet, 2018]. [Mei and Montanari, 2019]. 6



Student Model II: Two-layer Neural Network

Width-N Two-layer NN

fNN(x) =
1√
N

N∑
i=1

aiσ(⟨x ,w i ⟩+ bi )

• Input data: x ∈ Rd .

• Parameters: W ∈ Rd×N , a ∈ RN , b ∈ RN .

• Element-wise nonlinearity: σ : R→ R.

Optimization: given a convex loss ℓ,

• Optimizing a under fixed W is convex.

• Optimizing W under fixed a is non-convex .

[x ]1

[x ]2

[x ]d

ϕN

ϕ3

ϕ2

ϕ1w1,1w1,1

w1,2w1,2

w1,dw1,d

y

a1a1

a2a2

a3a3

aNaN

... ...

input
x ∈ Rd

hidden layer
ϕi = σ(⟨x ,w i ⟩+bi )

output
y ∈ R

Parameters W learned via gradient descent =⇒ representation learning.
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Prior Results: Isotropic Data (θ = 0)
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Theorem ([Ghorbani et al. 19], [Hu and Lu 20], [Bartlett et al. 21], ...)

Denote P>1 as the projector orthogonal to constant and linear functions in L2(PX ),
f (x) = µ0 + µ1⟨x ,β∗⟩+ P>1f (x). Then for x ∼ N (0, I ) and n, d →∞, n/d → ψ,

min{RRF(λ),Rker(λ)} ≥ ∥P>1f∗∥2L2 + od,P(1),

• In the proportional limit, kernel models can only learn linear functions .
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Prior Results: Isotropic Data (θ = 0)

Theorem ([BES+22], [Bietti et al. 22], [Mousavi et al. 22], [Berthier et al. 23]...)

For x ∼ N (0, I ), if the nonlinearities σ, σ∗ satisfy a non-degeneracy condition:

E[σ′(z)] = µ1 ̸= 0, E[σ′
∗(z)] = µ∗

1 ̸= 0, for z ∼ N (0, 1),

then GD-trained two-layer NN can learn f∗ in the proportional regime.

Provable benefit of gradient-based feature learning!

❐ Small lr η=Θ(1) : trained kernel always
improves upon the initial RF estimator,
but the model remains "linear".

❐ Large lr η=Θ(
√
N) : regression on trained

features can learn nonlinear f∗.
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A Spiked Model for the Weight Matrix
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* Blue: empirical simulation

Red: analytic prediction
(BBP Phase Transition)

• σ = tanh, f∗(x) = ReLU(⟨x ,β∗⟩).
• Teacher β∗ ∝ [−1d/2; 1d/2].

Observation: after one feature learning step on the first-layer W :

• The bulk of the spectrum of W 1 remains unchanged

• A spike (×) appears in W 1, which aligns with signal β∗

10



Limitation under Isotropic Data

Question: what if the nondegeneracy assumption is violated, i.e. E[σ′
∗(z)] = 0?

Hermite expansion: σ(z) =
∑∞

i=0 αiHei (z), σ∗(z) =
∑∞

i=0 α
∗
i Hei (z).

• we assume α∗
0 = E[σ∗(z)] = 0. • nondegeneracy ⇒ α1, α

∗
1 ̸= 0.

E[∇wL(fNN)] ≈ E[xσ′(⟨x ,w⟩)f∗(x)]

= β∗ · E[σ
′
∗(⟨x ,β∗⟩)σ

′(⟨x ,w⟩)] + w · E[...] Stein’s lemma

= β∗ ·
∞∑
i=0

(i + 1)2αi+1α
∗
i+1⟨w ,β∗⟩

i + ... Hermite expansion

Observation: at random initialization, ⟨w ,β∗⟩i = Θ̃(d−i/2) w.h.p.

Information exponent of σ∗: smallest k ∈ N such that α∗
k ̸= 0.

Intuition: the magnitude of “information” contained in the gradient update.
11



Limitation under Isotropic Data (continued)

Examples • σ∗(z) = He1(z) ⇒ k = 1. • σ∗(z) = He3(z) ⇒ k = 3.

•σ∗(z) = He1(z) + He3(z) ⇒ k = 1. • σ∗(z) = He2(z) + He3(z) ⇒ k = 2.

Consequence:

• Gradient norm. ∥E[xσ′(⟨x ,w⟩)f∗(x)]∥ = Θ̃(d−(k−1)/2).

• Gradient concentration. with high probability,∥∥E[xσ′(⟨x ,w⟩)f∗(x)]− 1
n

∑n
i=1 x iσ

′(⟨x i ,w⟩)f∗(x i )
∥∥ ≲

√
d/n.

/ n = Ω(dk) samples required to achieve nontrivial concentration...

In the proportional regime (n ≍ d) ,

❐ kernel method only learns linear σ∗ (degree p = 1).

❐ representation learning (with one GD step) only works when k = 1 .
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Motivation: Stronger Learnability Results?

Question: Under what settings can

• kernel ridge regression learn f∗ that is nonlinear (p > 1)?

• two-layer NN + GD learn f∗ with larger information exponent (k > 1)?

Prior results. For isotropic x , KRR: n = Ω(dp), NN: n = Ω
(
dΘ(k)

)
.

What about the proportional scaling (n ≍ d)? Need to introduce anisotropy !

Motivation: if the input already contains low-dimensional structure (spike),
can kernel & NN learn a larger class of f∗ in the proportional regime?

• Ghorbani et al., 2021. Linearized two-layer neural networks in high dimensions
• Ben Arous et al., 2021. Stochastic gradient descent on non-convex losses from high-dimensional inference
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Setting: Anisotropic Data with Perfect Alignment

Ideal Setting: perfect alignment between spike and index features µ = β∗ .

• Can be efficiently solved by PCA + fitting f∗ on the top principal component.

= *

[xxT] ❐ Spiked data: x ∼ N (0, I + θβ∗β
⊤
∗ ).

❐ Aligned teacher: f∗(x) = σ∗

(
1√
1+θ

⟨x ,β∗⟩
)
,

with degree p and information exponent k .

Interpretation: f∗ focuses on the most prominent
directions of the input features.

• Larger spike (SNR) θ ⇒ easier problem.

Question: How large should θ be, in order for (i) kernel ridge regression, and
(ii) neural network trained by GD, to learn f∗ in the proportional regime?
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Sharp Analysis of Kernel Methods

Theorem ([BES+23] Necessary and Sufficient Conditions for KRR)

Given ℓ ∈ N, suppose the spike magnitude satisfies

θ ≍ dγ for γ ∈
(
1− 1/ℓ, 1− 1/ℓ+1

)
,

Then as n, d →∞, n/d → ψ, with probability 1, the prediction risk of KRR satisfies

R(f̂ker)− ∥P>ℓf∗∥2L2 = o(1).
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Representation Learning via One Gradient Step

Theorem ([BES+23] Sufficient Condition for NN+GD)

GD-trained two-layer ReLU network with width N = Ω(dε) can learn f∗ with
degree p and information exponent k in the proportional regime if

θ = ω
(
d1− 1

k

)
.

Observation: required SNR θ does not depend on the highest degree p.

103

dimensionality d
100

101

sp
ik

e 

d1/2

Err

0.2

0.4

0.6

0.8

1.0

k = 2.

103

dimensionality d
100

101

sp
ik

e 

d2/3

Err

0.2

0.4

0.6

0.8

1.0

1.2

k = 3. 16



Neural Network Learnability (sketch)

• Hermite expansion . Recall Σ = I + θβ∗β
⊤
∗ , the population gradient is given as

E[xσ′(⟨x ,w⟩+ b)f∗(x)]

=(1 + θ)−1/2Σβ∗ · E
[
σ′
∗

(
(1 + θ)−1/2⟨x ,β∗⟩

)
σ′(⟨x ,w⟩+ b)

]
+ w · E[...]

=
√

1 + θβ∗ ·
∞∑
i=0

(i + 1)2αb
i+1α

∗
i+1⟨w ,

√
1 + θβ∗⟩

i + ...

• Observation 1: the spike in Σ amplifies the gradient in the direction of β∗.
• Observation 2: bias units “diversify” the nonlinearity σ.

• Gradient concentration . To achieve nontrivial concentration when n ≍ d ,

θ = Ω
(
d1− 1

k

)
.

• Univariate approximation . Random bias units to approximate the link σ∗:

fNN(x) =
1√
N

N∑
i=1

aiσ(x⊤w i + bi ), bi ∼ N (0, 1).

17



Comparing KRR and NN

k ≤ p by definition =⇒ neural network + gradient descent (bottom) can
adapt to low-dimensional structure more efficiently than kernel method (top).
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Summary: Learning in the Proportional Regime

Isotropic x ∼ N (0, I )

Spike emerges in updated weights of NN,
which improves the performance.

❐ KRR only learns linear f∗ (p = 1)

❐ NN can learn nonlinear f∗, but
requires nondegeneracy (k = 1)

Anisotropic x ∼ N (0, I + θβ∗β
⊤
∗ )

Spike in the input data improves the
performance of both kernel and NN.

❐ KRR: θ = Ω
(
d1− 1

p

)
necessary.

❐ NN: θ = ω
(
d1− 1

k

)
sufficient.
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Setting: Beyond Perfect Alignment?

Question: what happens if we don’t have perfect alignment, i.e. β∗ ̸= µ ?

• Problem cannot be solved by PCA + fitting f∗ on the top principal component.

*

[xxT] ❐ Spiked data: x ∼ N (0, I + θµµ⊤).

❐ Misaligned teacher:
f∗(x) = σ∗

(
1√

1+θ⟨µ,β∗⟩2
⟨x ,β∗⟩

)
, with

degree p and information exponent k .

Interpretation: f∗ is partially captured by the most
prominent directions of input features.

Spike-target alignment: ⟨µ,β∗⟩ ≍ d−γ1 , Spike magnitude: θ ≍ dγ2 .

Remark: We take γ1 ∈ [0, 1/2], and γ2 ∈ [0, 1].
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Insufficiency of One Gradient Step

First gradient step: denote κ = 1 + θ⟨µ,β∗⟩2, (ignoring the bias terms)

E[xσ′(⟨x ,w⟩)f ∗(x)] = κ−1/2Σβ∗ · E
[
σ′
∗

(
κ−1/2⟨x ,β∗⟩

)
σ′(⟨x ,w⟩)

]
+...

= (β∗ + ⟨β∗,µ⟩θ · µ) · κ
−1/2Ex

[
f ′∗(x)σ

′(x ,w)
]
+ ...

/ One gradient step does not find the direction of f∗.

, When ⟨µ,β∗⟩ ≍ d−γ1 is nontrivial, i.e., γ1 < 1/2, the first GD step provides
“warm-start” to subsequent gradient updates.

Goal: characterize the sample complexity2 of feature learning under varying
Spike-target alignment: ⟨µ,β∗⟩ ≍ d−γ1 Spike magnitude: θ ≍ dγ2 .

Question: what is the suitable gradient dynamics for this setting?

2We no longer restrict ourselves to the proportional asymptotic limit.
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Algorithm: Spherical Gradient Flow?

Simplification – one-neuron dynamics. Consider w0 = w1 = ...wN randomly

initialized from unit sphere: f t(x) = σ(⟨x ,w t⟩).

Candidate I – spherical gradient flow [Ben Arous et al. 2021] [Bietti et al. 2022]:

dw t = −∇SR(f t) dt, ∇SR(f t) := (I − w tw t⊤)∇wR(f t).

Proposition ([MWS+23] Failure of Spherical Gradient, informal )

Consider the perfectly aligned setting β∗ = µ. Then for the population dynamics,

supt≥0

∣∣⟨w t ,β∗⟩
∣∣ ≲ d−1/2,

when θ ≍ dγ2 , γ2 ∈
(
0, d1− 1

k−1
)
, with probability 0.99 over the random initialization.

Repulsive force: Ex [f
t(x)2] grows with

∣∣⟨w t ,β∗⟩
∣∣, which may prevent alignment.

R(f ) = Ex [f∗(x)2]− 2Ex [f∗(x)f (x)]︸ ︷︷ ︸
correlation ,

+ Ex [f (x)2]︸ ︷︷ ︸
repulsion /
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Algorithm: Normalized Gradient Flow

Candidate II – normalized gradient flow: f t(x) = σ
(

⟨x,w t⟩
∥Σ1/2w t∥

)
,

dw t = −η(w t)∇wR(f t) dt, η(w t) = ⟨w ,Σw⟩.

Intuition: Ex [f
t(x)2] = Ez∼N (0,1)[σ(z)

2] ⇒ objective reduced to correlation loss ,

• Resembles batch normalization!

Algorithm 1: Gradient-based training for two-layer neural network

empirical gradient flow on first-layer

dw t = −η(w t)Σ̂
−1∇wRn(f

t) dt, w0 ∼ Unif(Sd−1).

ridge regression for second-layer

â ← argmina

{
1
n

∑n
j=1

(
yj − ⟨ϕj , a⟩

)2
+ λ∥a∥2

}
, [ϕj ]i :=

1√
N
σ
(〈

x j ,w t
i

〉
+ bi

)
.

return prediction function f̂ (x) = 1√
N

∑N
i=1 âiσ

(〈
x ,w t

i

〉
+ bi

)
23



Sample & Runtime Complexity

Recall ⟨µ,β∗⟩ ≍ d−γ1 and θ ≍ dγ2 , with γ1 ∈ [0, 1/2] and γ2 ∈ [0, 1].

Theorem ([MWS+23] Complexity of Empirical Gradient Flow)

Two-layer ReLU network learns f∗ with information exponent k and width m ≍ ε−1,
if the sample complexity satisfies3

n ≳


d
(
dk−1 ∨ ε−2) 0 ≤ γ2 < γ1,

d
(
d (k−1)(1−2(γ2−γ1)) ∨ ε−2

)
γ1 < γ2 < 2γ1,

d
(
d (k−1)(1−γ2) ∨ ε−2

)
2γ1 < γ2 < 1,

and the gradient flow runtime satisfies T ≍ τk (δ0) + ln(1/ε), where

τk (z) :=


1 k = 1

ln(1/z) k = 2

(1/z)k−2 k > 2

and δ0 =


d−1/2 0 ≤ γ2 < γ1

dγ2−γ1−1/2 γ1 < γ2 < 2γ1

d (γ2−1)/2 2γ1 < γ2 < 1

.

3Requires an assumption on the link function: ζ(ω) =
∑

j≥k jα
∗
j αj ω

j−1 ≥ c ωk−1, ∀ω ∈ (0, 1),
which may be removed by introducing random bias units.
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Interplay between Spike Magnitude and Alignment

Recall ⟨µ,β∗⟩ ≍ d−γ1 and θ ≍ dγ2 , with γ1 ∈ [0, 1/2] and γ2 ∈ [0, 1].

Interpretation of Rates:

• γ1 = 0: perfect alignment
puts us in the “easy” regime.

• γ1 = 0.5: two independent µ
and β∗ on unit sphere.

• γ1 ∈ (0, 0.5): problem gets
easier for larger γ2 .

Theorem ([Donhauser et al. 2021] KRR lower bound, informal )

Rotationally invariant kernels require at least n ≍ dΘ((1−γ2)p) samples to learn f∗.
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Conclusion: Learning under Structured Data

So far: learning single-index model under spiked covariance data.

x ∼ N (0, I + θµµ⊤), f∗(x) = σ∗(⟨x ,β∗⟩), where ⟨β∗,µ⟩ ≍ d−γ1 , θ ≍ dγ2 .

❐ Perfectly aligned setting (β∗ = µ).
• Precise analysis for KRR; upper bound for two-layer NN + one GD step.

❐ Partially aligned setting (β∗ ̸= µ).
• Sample complexity analysis of normalized gradient flow.
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Beyond “Narrow” NNs: the Mean-field Regime

“Blessing” of overparameterization: recall that

E[∇w iL(fNN)] ≈ β∗ ·
∞∑
i=0

(i + 1)2αi+1α
∗
i+1⟨w i ,β∗⟩

i + ...

, If the NN is sufficiently wide, there exists some w i with ⟨w i ,β∗⟩ ≫ d−1/2.

/ Required width may be exponential in the dimensionality d .

Mean-field limit : infinite-width two-layer neural network

For convex loss L, learning is

• non-convex w.r.t. w i

• convex w.r.t. distribution p

Perspective: study optimization
in the space of measures
(Wasserstein gradient flow, etc.)
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Classifying Sparse Parity Functions

Anisotropic k-parity: x = Az , y = sign
(∏

i∈Ik
zi
)
, zi

i.i.d.∼ Unif
(
{±1/

√
d}

)
.

• Analogous to single-index f∗

with information exponent k.

• When A = I (isotropic), CSQ
lower bound n ≍ dk−1.

• k = 2 ⇒ XOR problem.

Example - spiked covariance: for i ∈ Ik , j /∈ Ik we have xi
xj
≍ dα/2.

Theorem ([SWO+23] Mean-field Learning of Anisotropic Parity)

Two-layer NN optimized by noisy gradient descent learns k-parity with

n = Θ(d1−α), N = exp(d1−α), t = exp(d1−α).

Observation: sample complexity independent of information exponent (leap) k.
28



Analysis: Mean-field Langevin Dynamics

Mean-field Langevin dynamics. Given convex F : P2(Rd)→ R,

dXt = −∇ δF (µt )
δµ

(Xt) dt +
√

2λ dWt , µt = Law(Xt).

• Wasserstein gradient flow that minimizes minµ∈P2{F (µ) + λEnt(µ)}.

, Exponential convergence in the infinite-width & continuous-time limit.
• [NWS22] Convex analysis of the mean-field Langevin dynamics
• Chizat 22. Mean-field langevin dynamics: exponential convergence and annealing

, Uniform-in-time propagation of chaos at any fixed temperature λ.
• Chen et al. 23. Uniform propagation of chaos for mean-field Langevin dynamics
• [SWN23] Mean-field Langevin dynamics: time and space discretization, stochastic

gradient, and variance reduction

/ Logarithmic Sobolev constant depends exponentially on λ.
• Anneal λ ≍ d−1 to learn low-dimensional f∗ ⇒ exponential computation...

Question: Poly-time learning guarantees for an interesting class of f∗?
29
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