Feature learning in two-layer neural networks under structured data

Denny Wu

Center for Data Science, New York University Center for Computational Mathematics, Flatiron Institute

Introduction

- "High-dimensional asymptotics of feature learning: how one gradient step improves the representation", NeurIPS 2022 (short version).
- "Learning in the presence of low-dimensional structure: a spiked random matrix perspective", NeurIPS 2023.
- "Gradient-based feature learning under structured data", NeurIPS 2023.

Jimmy Ba

Murat A. Erdogdu Alireza Mousavi

Taiji Suzuki

Zhichao Wang

Greg Yang

Introduction: Learning under Structured Data

Target function: *low-dimensional* polynomial $f_* : \mathbb{R}^d \to \mathbb{R}$

Single-index target (teacher)¹: $f_*(\mathbf{x}) = \sigma_*(\langle \mathbf{x}, \boldsymbol{\beta}_* \rangle), \ \mathbf{x} \sim \mathcal{N}(0, \boldsymbol{\Sigma}).$

• Link function $\sigma_* : \mathbb{R} \to \mathbb{R}$ is a degree-p polynomial (with $\mathbb{E}_{\mathcal{N}(0,1)}[\sigma_*] = 0$).

Input Data: high-dimensional feature with low-dimensional structure

Spiked covariance data: $\Sigma = I + \theta \mu \mu^{\top}$, $\|\mu\| = 1$, $\theta \asymp d^{\beta}$.

- High-dimensionality: large amount of input features $(d \rightarrow \infty)$.
- Low-dimensional structure: Larger spike $\theta \Rightarrow$ stronger anisotropy.

 $^{{}^{1}}eta_{*}$ is normalized such that $\mathbb{E}\langle x,eta_{*}
angle^{2}=1$, and σ_{*} is dimension-free.

Introduction: Spiked Random Matrix Model

Spiked Random Matrix: low-dimensional signal + high-dimensional noise.

- Bulk: *uninformative* & high-dimensional random noise.
- **Spike:** *informative* & low-dimensional structure.

- Johnstone 2001. On the distribution of the largest eigenvalue in principal components analysis
- Baik et al. 2005. Phase transition of the largest eigenvalue for non-null complex sample covariance matrices

Introduction: Summary of Results

• Training. Empirical risk minimization (potentially ℓ_2 -regularized):

$$\mathcal{R}_n(f) = \frac{1}{n} \sum_{i=1}^n (f(\boldsymbol{x}_i) - y_i)^2, \quad y_i = f_*(\boldsymbol{x}_i) + \varepsilon_i,$$

• Test. Prediction risk: $\mathcal{R}(f) = \mathbb{E}_{\mathbf{x}}[(f(\mathbf{x}) - f_*(\mathbf{x}))^2] = \|f - f_*\|_{L^2(P_{\times})}^2$.

Overview: complexity of gradient-based feature learning

Interplay between structured data and statistical & optimization efficiency.

- 1. **one-step feature learning** : sharp guarantees in the *proportional regime*.
- 2. (normalized) gradient flow for partially aligned data.
- 3. mean-field neural networks for (anisotropic) k-parity classification.

Student Model I: Kernel Ridge Regression

- Random features regression. Given $\phi_{\mathsf{RF}}(x) = \frac{1}{\sqrt{N}}\sigma(W_0^{\top}x) \in \mathbb{R}^N$, $\hat{f}_{\mathsf{RF}}(x) = \langle \phi_{\mathsf{RF}}(x), \hat{a} \rangle, \quad \hat{a} = \operatorname{argmin}_a \left\{ \frac{1}{n} \sum_{i=1}^n (y_i - \langle \phi_{\mathsf{RF}}(x_i), a \rangle)^2 + \frac{\lambda}{N} \|a\|^2 \right\}.$
- Kernel ridge regression. Given inner-product kernel: $k(x, y) = g\left(\frac{\langle x, y \rangle}{d}\right)$,

$$\hat{f}_{\mathsf{ker}} = \operatorname*{argmin}_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\boldsymbol{x}_i))^2 + \lambda \|f\|_{\mathcal{H}}^2 \right\} \Rightarrow \hat{f}_{\mathsf{ker}}(\boldsymbol{x}) = \boldsymbol{k}(\boldsymbol{x}, \boldsymbol{X})^{\mathsf{T}} (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}.$$

Fixed feature map \implies no representation learning.

Student Model II: Two-layer Neural Network

Width-// Two-layer NN

$$f_{\mathsf{NN}}(\pmb{x}) = rac{1}{\sqrt{N}}\sum_{i=1}^{N} \pmb{a}_i \sigma(\langle \pmb{x}, \pmb{w}_i
angle + b_i)$$

- Input data: $x \in \mathbb{R}^d$.
- Parameters: $W \in \mathbb{R}^{d \times N}, \boldsymbol{a} \in \mathbb{R}^{N}, \boldsymbol{b} \in \mathbb{R}^{N}.$
- Element-wise nonlinearity: $\sigma : \mathbb{R} \to \mathbb{R}$.

Optimization: given a convex loss ℓ ,

- Optimizing *a* under fixed *W* is *convex*.
- Optimizing *W* under fixed *a* is *non-convex*.

Parameters W learned via gradient descent \implies representation learning.

Prior Results: Isotropic Data ($\theta = 0$)

Theorem ([Ghorbani et al. 19], [Hu and Lu 20], [Bartlett et al. 21], ...)

Denote $P_{>1}$ as the projector orthogonal to constant and linear functions in $L^2(P_X)$, $f(x) = \mu_0 + \mu_1 \langle x, \beta_* \rangle + P_{>1}f(x)$. Then for $x \sim \mathcal{N}(0, I)$ and $n, d \to \infty, n/d \to \psi$, $\min\{\mathcal{R}_{\mathrm{RF}}(\lambda), \mathcal{R}_{\mathrm{ker}}(\lambda)\} \ge \|P_{>1}f_*\|_{L^2}^2 + o_{d,\mathbb{P}}(1)$,

• In the proportional limit, kernel models can only learn linear functions.

Theorem ([BES+22], [Bietti et al. 22], [Mousavi et al. 22], [Berthier et al. 23]...)

For $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$, if the nonlinearities σ, σ_* satisfy a non-degeneracy condition: $\mathbb{E}[\sigma'(z)] = \mu_1 \neq 0, \quad \underline{\mathbb{E}}[\sigma'_*(z)] = \mu_1^* \neq 0, \quad \text{for } z \sim \mathcal{N}(0, 1),$

then GD-trained two-layer NN can learn f* in the proportional regime.

Provable benefit of gradient-based feature learning!

- □ Small Ir $\eta = \Theta(1)$: trained kernel always improves upon the initial RF estimator, but the model remains "*linear*".
- □ Large Ir $\eta = \Theta(\sqrt{N})$: regression on trained features can learn **nonlinear** f_* .

A Spiked Model for the Weight Matrix

Blue: empirical simulation Red: analytic prediction (BBP Phase Transition)

- $\sigma = \operatorname{tanh}, f_*(x) = \operatorname{ReLU}(\langle x, \beta_* \rangle).$
- Teacher $\beta_* \propto [-1_{d/2}; 1_{d/2}].$

Observation: after one feature learning step on the first-layer **W**:

- The **bulk** of the spectrum of \boldsymbol{W}_1 remains unchanged
- A spike (imes) appears in W_1 , which aligns with signal eta^*

Limitation under Isotropic Data

Question: what if the *nondegeneracy* assumption is violated, i.e. $\mathbb{E}[\sigma'_*(z)] = 0$?

Hermite expansion:
$$\sigma(z) = \sum_{i=0}^{\infty} \alpha_i \operatorname{He}_i(z), \ \sigma_*(z) = \sum_{i=0}^{\infty} \alpha_i^* \operatorname{He}_i(z).$$

• we assume $\alpha_0^* = \mathbb{E}[\sigma_*(z)] = 0.$ • **nondegeneracy** $\Rightarrow \alpha_1, \alpha_1^* \neq 0.$

$$\begin{split} \mathbb{E}[\nabla_{\boldsymbol{w}}\mathcal{L}(f_{\mathsf{NN}})] &\approx \mathbb{E}[\boldsymbol{x}\sigma'(\langle \boldsymbol{x}, \boldsymbol{w} \rangle)f_{*}(\boldsymbol{x})] \\ &= \beta_{*} \cdot \mathbb{E}[\sigma'_{*}(\langle \boldsymbol{x}, \boldsymbol{\beta}_{*} \rangle)\sigma'(\langle \boldsymbol{x}, \boldsymbol{w} \rangle)] + \boldsymbol{w} \cdot \mathbb{E}[...] \quad \textit{Stein's lemma} \\ &= \beta_{*} \cdot \sum_{i=0}^{\infty} (i+1)^{2} \alpha_{i+1} \alpha_{i+1}^{*} \langle \boldsymbol{w}, \boldsymbol{\beta}_{*} \rangle^{i} + ... \quad \textit{Hermite expansion} \end{split}$$

Observation: at random initialization, $\langle \boldsymbol{w}, \boldsymbol{\beta}_* \rangle^i = \tilde{\Theta}(d^{-i/2})$ w.h.p.

Information exponent of σ_* : smallest $k \in \mathbb{N}$ such that $\alpha_k^* \neq 0$.

Intuition: the magnitude of "information" contained in the gradient update.

Limitation under Isotropic Data (continued)

Examples •
$$\sigma_*(z) = \operatorname{He}_1(z) \Rightarrow k = 1.$$
 • $\sigma_*(z) = \operatorname{He}_3(z) \Rightarrow k = 3.$
• $\sigma_*(z) = \operatorname{He}_1(z) + \operatorname{He}_3(z) \Rightarrow k = 1.$ • $\sigma_*(z) = \operatorname{He}_2(z) + \operatorname{He}_3(z) \Rightarrow k = 2.$

Consequence:

- Gradient norm. $\|\mathbb{E}[x\sigma'(\langle x, w \rangle)f_*(x)]\| = \tilde{\Theta}(d^{-(k-1)/2}).$
- Gradient concentration. with high probability, $\left\|\mathbb{E}[x\sigma'(\langle x, w \rangle)f_*(x)] - \frac{1}{n}\sum_{i=1}^n x_i\sigma'(\langle x_i, w \rangle)f_*(x_i)\right\| \lesssim \sqrt{d/n}.$

 \odot $n = \Omega(d^k)$ samples required to achieve nontrivial concentration...

In the proportional regime $(n \asymp d)$,

 \Box kernel method only learns linear σ_* (degree p = 1).

\square representation learning (with one GD step) only works when k = 1.

Motivation: Stronger Learnability Results?

Question: Under what settings can

- kernel ridge regression learn f_* that is nonlinear (p > 1)?
- two-layer NN + GD learn f_* with larger information exponent (k > 1)?

Prior results. For *isotropic* **x**, KRR: $n = \Omega(d^p)$, NN: $n = \Omega(d^{\Theta(k)})$.

What about the proportional scaling $(n \asymp d)$? Need to introduce *anisotropy*!

Motivation: if the input already contains low-dimensional structure (spike), can kernel & NN learn a larger class of f_* in the *proportional regime*?

- Ghorbani et al., 2021. Linearized two-layer neural networks in high dimensions
- Ben Arous et al., 2021. Stochastic gradient descent on non-convex losses from high-dimensional inference

Setting: Anisotropic Data with Perfect Alignment

Ideal Setting: perfect alignment between spike and index features $\mu = \beta_*$.

• Can be efficiently solved by PCA + fitting f_* on the top principal component.

□ Spiked data: $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I} + \theta \boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top)$. □ Aligned teacher: $f_*(\mathbf{x}) = \sigma_* \left(\frac{1}{\sqrt{1+\theta}} \langle \mathbf{x}, \boldsymbol{\beta}_* \rangle\right)$, with degree p and information exponent k.

Interpretation: f_* focuses on the most prominent directions of the input features.

• Larger spike (SNR) $\theta \Rightarrow$ easier problem.

Question: How large should θ be, in order for (*i*) kernel ridge regression, and (*ii*) neural network trained by GD, to learn f_* in the proportional regime?

Theorem ([BES+23] Necessary and Sufficient Conditions for KRR)

Given $\ell \in \mathbb{N}$, suppose the spike magnitude satisfies

$$heta ee d^\gamma \quad ext{for} \quad egin{array}{c} \gamma \in \left(1 - extsf{1}/ extsf{\ell}, 1 - extsf{1}/ extsf{\ell+1}
ight), \end{array}$$

Then as $n, d \to \infty, n/d \to \psi$, with probability 1, the prediction risk of KRR satisfies $\mathcal{R}(\hat{h}_{ker}) - \|P_{>\ell}f_*\|_{L^2}^2 = o(1).$

Theorem ([BES+23] Sufficient Condition for NN+GD)

GD-trained two-layer ReLU network with width $N = \Omega(d^{\varepsilon})$ can learn f_* with degree **p** and information exponent **k** in the proportional regime if

$$\theta = \omega \left(d^{1-\frac{1}{k}} \right).$$

Observation: required SNR θ does not depend on the *highest degree p*.

Neural Network Learnability (sketch)

- Hermite expansion . Recall $\Sigma = I + \theta \beta_* \beta_*^\top$, the population gradient is given as $\mathbb{E}[\mathbf{x}\sigma'(\langle \mathbf{x}, \mathbf{w} \rangle + b)f_*(\mathbf{x})]$ $= (1+\theta)^{-1/2} \Sigma \beta_* \cdot \mathbb{E}\Big[\sigma'_*\Big((1+\theta)^{-1/2} \langle \mathbf{x}, \beta_* \rangle\Big)\sigma'(\langle \mathbf{x}, \mathbf{w} \rangle + b)\Big] + \mathbf{w} \cdot \mathbb{E}[...]$ $= \sqrt{1+\theta} \beta_* \cdot \sum_{i=0}^{\infty} (i+1)^2 \alpha_{i+1}^b \alpha_{i+1}^* \langle \mathbf{w}, \sqrt{1+\theta} \beta_* \rangle^i + ...$
 - Observation 1: the spike in Σ amplifies the gradient in the direction of β_* .
 - **Observation 2:** bias units "diversify" the nonlinearity σ .
- Gradient concentration . To achieve nontrivial concentration when $n \asymp d$, $\theta = \Omega\left(d^{1-\frac{1}{k}}\right)$.
- Univariate approximation . Random bias units to approximate the link σ_* :

$$f_{\mathsf{NN}}({m{x}}) = rac{1}{\sqrt{N}}\sum_{i=1}^N a_i \sigma({m{x}}^{ op} {m{w}}_i + b_i), \quad b_i \sim \mathcal{N}(0,1).$$

Comparing KRR and NN

 $\underline{k \leq p}$ by definition \implies neural network + gradient descent (**bottom**) can adapt to low-dimensional structure more efficiently than kernel method (**top**).

Summary: Learning in the Proportional Regime

$\underline{\textbf{Isotropic}} \ \textbf{\textit{x}} \sim \mathcal{N}(0, \textbf{\textit{I}})$

Spike emerges in updated weights of NN, which improves the performance.

Anisotropic $\boldsymbol{x} \sim \mathcal{N}(0, \boldsymbol{I} + \boldsymbol{\theta \beta}_* \boldsymbol{\beta}_*^\top)$

Spike in the input data improves the performance of both kernel and NN.

$$\square \text{ KRR: } \theta = \Omega\left(d^{1-\frac{1}{p}}\right) \text{ necessary.}$$
$$\square \text{ NN: } \theta = \omega\left(d^{1-\frac{1}{k}}\right) \text{ sufficient.}$$

Setting: Beyond Perfect Alignment?

Question: what happens if we don't have perfect alignment, i.e. $\beta_* \neq \mu$?

• Problem cannot be solved by PCA + fitting f_* on the top principal component.

□ Spiked data: $\boldsymbol{x} \sim \mathcal{N}(0, \boldsymbol{I} + \boldsymbol{\theta} \boldsymbol{\mu} \boldsymbol{\mu}^{\top})$.

□ Misaligned teacher: $f_*(\mathbf{x}) = \sigma_* \left(\frac{1}{\sqrt{1 + \theta \langle \boldsymbol{\mu}, \boldsymbol{\beta}_* \rangle^2}} \langle \mathbf{x}, \boldsymbol{\beta}_* \rangle \right)$, with degree p and information exponent k.

Interpretation: *f*_{*} is *partially captured* by the most prominent directions of input features.

Spike-target alignment: $\langle \mu, \beta_* \rangle \simeq d^{-\gamma_1}$, Spike magnitude: $\theta \simeq d^{\gamma_2}$.

Remark: We take $\gamma_1 \in [0, 1/2]$, and $\gamma_2 \in [0, 1]$.

Insufficiency of One Gradient Step

First gradient step: denote $\kappa = 1 + \theta \langle \boldsymbol{\mu}, \boldsymbol{\beta}_* \rangle^2$, (ignoring the bias terms) $\mathbb{E}[\boldsymbol{x}\sigma'(\langle \boldsymbol{x}, \boldsymbol{w} \rangle) f^*(\boldsymbol{x})] = \kappa^{-1/2} \boldsymbol{\Sigma} \boldsymbol{\beta}_* \cdot \mathbb{E} \Big[\sigma'_* \Big(\kappa^{-1/2} \langle \boldsymbol{x}, \boldsymbol{\beta}_* \rangle \Big) \sigma'(\langle \boldsymbol{x}, \boldsymbol{w} \rangle) \Big] + \dots$ $= (\boldsymbol{\beta}_* + \langle \boldsymbol{\beta}_*, \boldsymbol{\mu} \rangle \theta \cdot \boldsymbol{\mu}) \cdot \kappa^{-1/2} \mathbb{E}_x \big[f'_*(\boldsymbol{x}) \sigma'(\boldsymbol{x}, \boldsymbol{w}) \big] + \dots$

- \odot One gradient step does not find the direction of f_* .
- © When $\langle \mu, \beta_* \rangle \simeq d^{-\gamma_1}$ is nontrivial, i.e., $\gamma_1 < 1/2$, the first GD step provides "warm-start" to subsequent gradient updates.

<u>Goal</u>: characterize the sample complexity² of feature learning under varying Spike-target alignment: $\langle \mu, \beta_* \rangle \simeq d^{-\gamma_1}$ Spike magnitude: $\theta \simeq d^{\gamma_2}$.

Question: what is the suitable gradient dynamics for this setting?

 $^{^2}$ We no longer restrict ourselves to the proportional asymptotic limit.

Algorithm: Spherical Gradient Flow?

Simplification – one-neuron dynamics. Consider $w_0 = w_1 = ...w_N$ randomly initialized from unit sphere: $f^t(x) = \sigma(\langle x, w^t \rangle)$.

<u>Candidate I</u> – spherical gradient flow [Ben Arous et al. 2021] [Bietti et al. 2022]: $dw^{t} = -\nabla^{s} \mathcal{R}(f^{t}) dt, \quad \nabla^{s} \mathcal{R}(f^{t}) := (I - w^{t} w^{t\top}) \nabla_{w} \mathcal{R}(f^{t}).$

Proposition ([MWS+23] Failure of Spherical Gradient, *informal*) Consider the perfectly aligned setting $\beta_* = \mu$. Then for the population dynamics, $\sup_{t \ge 0} |\langle w^t, \beta_* \rangle| \lesssim d^{-1/2}$,

when $\theta \asymp d^{\gamma_2}, \gamma_2 \in (0, d^{1-\frac{1}{k-1}})$, with probability 0.99 over the random initialization.

Repulsive force: $\mathbb{E}_{x}[f^{t}(x)^{2}]$ grows with $|\langle w^{t}, \beta_{*} \rangle|$, which may *prevent alignment*.

$$\mathcal{R}(f) = \mathbb{E}_{\mathbf{x}}[f_*(\mathbf{x})^2] - 2\underbrace{\mathbb{E}_{\mathbf{x}}[f_*(\mathbf{x})f(\mathbf{x})]}_{\text{correlation}} + \underbrace{\mathbb{E}_{\mathbf{x}}[f(\mathbf{x})^2]}_{\text{repulsion}} \underbrace{\mathbb{E}_{\mathbf{x}}[f(\mathbf{x})^2]}_{\text{repulsion}}$$

Algorithm: Normalized Gradient Flow

<u>Candidate II</u> – normalized gradient flow: $\begin{aligned} f^{t}(\mathbf{x}) &= \sigma\left(\frac{\langle \mathbf{x}, \mathbf{w}^{t} \rangle}{\|\mathbf{\Sigma}^{1/2} \mathbf{w}^{t}\|}\right), \\ \mathrm{d}\mathbf{w}^{t} &= -\eta(\mathbf{w}^{t}) \nabla_{\mathbf{w}} \mathcal{R}(f^{t}) \,\mathrm{d}t, \quad \eta(\mathbf{w}^{t}) = \langle \mathbf{w}, \mathbf{\Sigma} \mathbf{w} \rangle. \end{aligned}$

Intuition: $\mathbb{E}_{\mathbf{x}}[f^t(\mathbf{x})^2] = \mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z)^2] \Rightarrow$ objective reduced to *correlation loss* \odot

• Resembles *batch normalization*!

Algorithm 1: Gradient-based training for two-layer neural network

empirical gradient flow on first-layer

$$\mathrm{d} \boldsymbol{w}^t = -\eta(\boldsymbol{w}^t) \hat{\boldsymbol{\Sigma}}^{-1} \nabla_{\boldsymbol{w}} \mathcal{R}_n(f^t) \mathrm{d} t, \quad \boldsymbol{w}^0 \sim \mathrm{Unif}(\mathbb{S}^{d-1}).$$

ridge regression for second-layer

ret

$$\hat{\boldsymbol{a}} \leftarrow \operatorname{argmin}_{\boldsymbol{a}} \left\{ \frac{1}{n} \sum_{j=1}^{n} \left(y_{j} - \langle \boldsymbol{\phi}_{j}, \boldsymbol{a} \rangle \right)^{2} + \lambda \|\boldsymbol{a}\|^{2} \right\}, \quad [\boldsymbol{\phi}_{j}]_{i} := \frac{1}{\sqrt{N}} \sigma(\left\langle x_{j}, w_{i}^{t} \right\rangle + b_{i}).$$
urn prediction function $\hat{f}(\boldsymbol{x}) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \hat{\boldsymbol{a}}_{i} \sigma(\left\langle \boldsymbol{x}, \boldsymbol{w}_{i}^{t} \right\rangle + b_{i})$

Sample & Runtime Complexity

Theorem ([MWS+23] Complexity of Empirical Gradient Flow)

Two-layer ReLU network learns f_* with information exponent k and width $m \simeq \varepsilon^{-1}$, if the sample complexity satisfies³

$$n\gtrsim egin{cases} dig(d^{k-1}eearepsilon^{-2}ig) & 0\leq\gamma_2<\gamma_1,\ dig(d^{(k-1)(1-2(\gamma_2-\gamma_1))}eearepsilon^{-2}ig) & \gamma_1<\gamma_2<2\gamma_1,\ dig(d^{(k-1)(1-\gamma_2)}eearepsilon^{-2}ig) & 2\gamma_1<\gamma_2<1, \end{cases}$$

and the gradient flow runtime satisfies $T \asymp au_k(\delta_0) + \ln(1/\varepsilon)$, where

	1	k = 1			$d^{-1/2}$	$0 \leq \gamma_2 < \gamma_1$
$ au_k(z) := \langle$	$\ln(1/z)$	k = 2	and	$\delta_0 = \langle$	$d^{\gamma_2-\gamma_1-1/2}$	$\gamma_1 < \gamma_2 < 2\gamma_1 .$
	$(1/z)^{k-2}$	k > 2			$d^{(\gamma_2-1)/2}$	$2\gamma_1 < \gamma_2 < 1$

³Requires an assumption on the link function: $\zeta(\omega) = \sum_{j \ge k} j \alpha_j^* \alpha_j \omega^{j-1} \ge c \omega^{k-1}, \forall \omega \in (0, 1)$, which may be removed by introducing random bias units.

Interplay between Spike Magnitude and Alignment

 $\text{Recall } \langle \boldsymbol{\mu}, \boldsymbol{\beta}_* \rangle \asymp d^{-\gamma_1} \ \text{ and } \ \boldsymbol{\theta} \asymp d^{\gamma_2} \text{ , with } \gamma_1 \in [0, 1/2] \text{ and } \gamma_2 \in [0, 1].$

Interpretation of Rates:

- γ₁ = 0: perfect alignment puts us in the "easy" regime.
- γ₁ = 0.5: two independent μ and β_{*} on unit sphere.
- $\gamma_1 \in (0, 0.5)$: problem gets easier for larger γ_2 .

Theorem ([Donhauser et al. 2021] KRR lower bound, informal)

Rotationally invariant kernels require at least $n \simeq d^{\Theta((1-\gamma_2)\rho)}$ samples to learn f_* .

Conclusion: Learning under Structured Data

So far: learning *single-index model* under *spiked covariance* data.

 $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I} + \theta \mathbf{\mu} \mathbf{\mu}^{\top}), f_*(\mathbf{x}) = \sigma_*(\langle \mathbf{x}, \boldsymbol{\beta}_* \rangle), \quad \text{where } \langle \boldsymbol{\beta}_*, \mathbf{\mu}
angle \asymp d^{-\gamma_1}, \theta \asymp d^{\gamma_2}.$

- **D** Perfectly aligned setting $(\beta_* = \mu)$.
 - Precise analysis for KRR; upper bound for two-layer NN + one GD step.
- **D** Partially aligned setting $(\boldsymbol{\beta}_* \neq \boldsymbol{\mu})$.
 - Sample complexity analysis of normalized gradient flow.

Beyond "Narrow" NNs: the Mean-field Regime

"Blessing" of overparameterization: recall that $\mathbb{E}[\nabla_{\boldsymbol{w}_{i}}\mathcal{L}(f_{\mathsf{NN}})] \approx \beta_{*} \cdot \sum_{i=0}^{\infty} (i+1)^{2} \alpha_{i+1} \alpha_{i+1}^{*} \langle \boldsymbol{w}_{i}, \boldsymbol{\beta}_{*} \rangle^{i} + \dots$

 \odot If the NN is *sufficiently wide*, there exists some w_i with $\langle w_i, \beta_* \rangle \gg d^{-1/2}$.

③ Required width may be exponential in the dimensionality d.

Mean-field limit : infinite-width two-layer neural network

For convex loss L, learning is

- non-convex w.r.t. **w**_i
- convex w.r.t. distribution p

Perspective: study optimization in the space of measures (Wasserstein gradient flow, etc.)

Classifying Sparse Parity Functions

Anisotropic k-parity: $\mathbf{x} = \mathbf{A}\mathbf{z}, \ \mathbf{y} = \operatorname{sign}(\prod_{i \in I_k} z_i), \ z_i \stackrel{i.i.d.}{\sim} \operatorname{Unif}(\{\pm 1/\sqrt{d}\}).$

- Analogous to single-index f_{*} with *information exponent k*.
- When *A* = *I* (isotropic), CSQ lower bound *n* ≍ *d*^{k-1}.

•
$$k = 2 \Rightarrow XOR$$
 problem.

Example - spiked covariance: for $i \in I_k, j \notin I_k$ we have $\frac{x_i}{x_i} \asymp d^{\alpha/2}$.

Theorem ([SWO+23] Mean-field Learning of Anisotropic Parity)

Two-layer NN optimized by noisy gradient descent learns k-parity with

$$n = \Theta(d^{1-\alpha}), \quad N = \exp(d^{1-\alpha}), \quad t = \exp(d^{1-\alpha}).$$

Observation: sample complexity *independent* of information exponent (leap) *k*.

Analysis: Mean-field Langevin Dynamics

Mean-field Langevin dynamics. Given convex $F : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$, $\mathrm{d}X_t = -\nabla \frac{\delta F(\mu_t)}{\delta \mu}(X_t) \mathrm{d}t + \sqrt{2\lambda} \mathrm{d}W_t, \quad \mu_t = \mathrm{Law}(X_t).$

- Wasserstein gradient flow that minimizes min_{μ∈P₂}{F(μ) + λEnt(μ)}.
- © Exponential convergence in the infinite-width & continuous-time limit.
 - [NWS22] Convex analysis of the mean-field Langevin dynamics
 - Chizat 22. Mean-field langevin dynamics: exponential convergence and annealing
- \bigcirc Uniform-in-time propagation of chaos at any *fixed* temperature λ .
 - Chen et al. 23. Uniform propagation of chaos for mean-field Langevin dynamics
 - [SWN23] Mean-field Langevin dynamics: time and space discretization, stochastic gradient, and variance reduction
- \odot Logarithmic Sobolev constant depends *exponentially* on λ .
 - Anneal $\lambda \asymp d^{-1}$ to learn low-dimensional $f_* \Rightarrow$ exponential computation...

Question: Poly-time learning guarantees for an interesting class of f_* ?

Thank you! Happy to take questions :)

- Ghorbani et al., 2020. When do neural networks outperform kernel methods?
- Hu and Lu, 2020. Universality laws for high-dimensional learning with random features.
- Ben Arous et al., 2021. Stochastic gradient descent on non-convex losses from high-dimensional inference.
- Bartlett et al., 2021. Deep learning: a statistical viewpoint.
- Refinetti et al., 2021. Classifying high-dimensional Gaussian mixtures: where kernel methods fail and neural networks succeed.
- Abbe et al., 2022. The merged-staircase property: a necessary and nearly sufficient condition for SGD learning of sparse functions on two-layer neural networks.
- Damien et al., 2022. Neural networks can learn representations with gradient descent.
- Bietti et al., 2022. Learning single-index models with shallow neural networks.
- Berthier et al., 2023. Learning time-scales in two-layers neural networks.
- Abbe et al. 2023. SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics.