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Introduction

e "High-dimensional asymptotics of feature learning: how one gradient step improves the
representation", NeurlPS 2022 (short version).

e "Learning in the presence of low-dimensional structure: a spiked random matrix
perspective", NeurlPS 2023.

o "Gradient-based feature learning under structured data", NeurlPS 2023.
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Introduction: Learning under Structured Data

Target function: /ow-dimensional polynomial f, : RY — R

Single-index target (teacher)®: f.(x) = 0.((x,/7.)), x ~ N(0, ). )

Input Data: high-dimensional feature with low-dimensional structure

Spiked covariance data: X =/ + v el =1, - |




Introduction: Spiked Random Matrix Model

Spiked Random Matrix: low-dimensional signal + high-dimensional noise. J
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o Johnstone 2001. On the distribution of the largest eigenvalue in principal components analysis
e Baik et al. 2005. Phase transition of the largest eigenvalue for non-null complex sample covariance matrices



Introduction: Summary of Results

e Training. Empirical risk minimization (potentially ¢>-regularized):

Z(f(x, WP vi= () e

e Test. Prediction risk: R(f) = Ex[(f(x) — f.(x))*] = ||f — f*HiZ(PX)'

Overview: complexity of gradient-based feature learning

O interplay between structured data and statistical & optimization efficiency.

1. one-step feature learning : sharp guarantees in the proportional regime.

2. (normalized) gradient flow for partially aligned data.

3.



Student Model I: Kernel Ridge Regression

e Random features regression. Given ¢ge(x) = \%NJ(WJX) eR",

e Kernel ridge regression. Given inner-product kernel: k(x,y) = g(%),

frer(x) = k(x, X)T(K + M)y,

Fixed feature map == no representation learning. J

MSE




Student Model II: Two-layer Neural Network
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Optimization: given a convex loss /,

e Optimizing W under fixed a is non-convex. opy

Parameters W learned via gradient descent — representation learning. J




Prior Results: Isotropic Data (¢

— A=10"*
o A=10!
10%}-— .
N === IPsaf "I
%
c
8 \
3 N\
(7
H NN
AN\
\§§\\
107! o
10° 10t 10?2

Theorem ([Ghorbani et al. 19], [Hu and Lu 20], [Bartlett et al. 21], ...)

Denote P~ as the projector orthogonal to constant and linear functions in L*(Px),
Then for x ~ N(0,1) and n,d — oo, n/d — 1,
min{Rrr(A), Rier(A)} > [|Ps1fillZ + 0ap(1),

~

e In the proportional limit, kernel models can only learn linear functions.



Prior Results: Isotropic Data (0 =

Theorem ([BES+22], [Bietti et al. 22], [Mousavi et al. 22], [Berthier et al. 23]...)
For x ~ N(0, ), if the nonlinearities o, o, satisfy a non-degeneracy condition:
Elo'(2)] = 1 #0, E[o,(2)] = pi #0, for z ~ N(0,1),

then GD-trained two-layer NN can learn f, in the proportional regime.

Provable benefit of gradient-based feature learning!

3 Small Ir n=0©(1) : trained kernel always
improves upon the initial RF estimator,
but the model remains "/inear".

prediction risk

initialized CK ™
— . H H v n=0(1) u,
O Large Ir n=0O(V/N) : regression on trained . oo
features can learn nonlinear f.. - P I
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A Spiked Model for the Weight Matrix

Alignment of u; and B+
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Observation: after one feature learning step on the first-layer W:
e The bulk of the spectrum of W7 remains unchanged

e A spike (x) appears in W1, which aligns with signal 3*
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Limitation under Isotropic Data

Question: what if the nondegeneracy assumption is violated, i.e. E[o.(z)] = 07

Hermite expansion: o(z) = Y > «;Hei(z), 0.(z) = > 0y afHe;(2).

e nondegeneracy = a1, aj # 0.

E[VwL(fun)] = E[xo’({x, w))f.(x)]
=B, -Elo.({x,8.)a" ({x,w))] + Stein's lemma

=0, Z(I + 1) 2ai0f 1 (w, B,) + ... Hermite expansion
=0

Observation: at random initialization, (w, 3,)" = ©(d~//?) w.h.p.

Information exponent of o,: smallest kK € N such that a} # 0. J
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Limitation under Isotropic Data (continued)

Examples e0.(z) =Hei(z) = k=1. eo0.(z) =Hes(z) = k=23.
00.(z) =Hei(z) + Hesz(z) = k=1. e0.(z) =Hex(z)+ Hes(z) = k=2.

Consequence:
e Gradient norm. |E[xo’((x, w))f.(x)]|| = &(d~(-~1/2).
o Gradient concentration.

[Elxe’((x, ). ()] = £ 3270, xio' (i, w))Eu(xi)|| < v/d/n.

® n = Q(d*) samples required to achieve nontrivial concentration...

In the proportional regime (n =< d) ,

O kernel method only learns linear o, (degree p = 1).

(3 representation learning only works when k =1.
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Motivation: St er Learnability Results?

Question: Under what settings can

e kernel ridge regression learn f. that is nonlinear (p > 1)?

e two-layer NN + GD learn f. with larger information exponent (k > 1)?

Prior results. For isotropic x, KRR: n=Q(d?), NN: n=Q(d°®). J

What about the proportional scaling (n < d)? Need to introduce anisotropy!

Motivation: if the input already contains low-dimensional structure (spike),
can kernel & NN learn a larger class of £, in the proportional regime? ’

e Ghorbani et al., 2021. Linearized two-layer neural networks in high dimensions
o Ben Arous et al., 2021. Stochastic gradient descent on non-convex losses from high-dimensional inference
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Setting: Anisotropic Data with Perfect Alignment

Ideal Setting: perfect alignment between spike and index features pu = 3, .

]

3 Spiked data: x ~ N (0,1 +63,3)).

(3 Aligned teacher: f.(x) = 0. (ﬁ(&,@)),

with degree p and information exponent k .

A

Question: How large should 0 be, in order for (i) kernel ridge regression, and
(i) neural network trained by GD, to learn f, in the proportional regime? J
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Sharp Analysis of Kernel Methods

Theorem ([BES+23] Necessary and Sufficient Conditions for KRR)

Given £ € N, suppose the spike magnitude satisfies
9x<d’ for ve(1-Ye,1l—Yepa),
Then as n,d — oo, n/d — 1, with probability 1, the prediction risk of KRR satisfies
Rlfer) = IPsefillf2 = o(1).

spike 6
spike 6

103 102 10° Err
dimensionality d dimensionality d
p=2. p=3.
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Representation Learning via One Gradient Step

Theorem ([BES+23] Sufficient Condition for NN+GD)

GD-trained two-layer ReLU network with width N = Q(d®) can learn f, with
degree p and information exponent k in the proportional regime if

=w(d ).

103
dimensionality d dimensionality d

k=2 k=3. 16




Neural Network Learnability (sketch)

o Hermite expansion . Recall X =1+ 03,3, the population gradient is given as
E[xo’((x, w) + b)f.(x)]
=(1+0) 2E8, -E[ol ((1+0)(x,8.) )0’ (x, w) + b)] +
=V1+08, - (i+1) 0lmafa(w,VI+608,) + ...
i=0

[ ]
o Gradient concentration . To achieve nontrivial concentration when n < d,
11
9= Q(d ; )
e Univariate approximation . Random bias units to approximate the link o.:

N
fNN(X) = ﬁZa;a(XTw;—kb;), b,‘ N./\/(O,].)
i=1
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Comparing KRR and NN

k < p by definition = neural network + gradient descent (bottom) can

adapt to low-dimensional structure more efficiently than kernel method (top).

1.0

]
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p=3 k=3 p=3 k=2 p=3 k=1
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Summary: Learning in the Proportional Regime

Isotropic x ~ N(0, 1) Anisotropic x ~ N(0, 1 + 68,8, )

Spike emerges in updated weights of NN, ’

which improves the performance.

Spike in the input data improves the
performance of both kernel and NN. J

O KRR only learns linear f, (p=1) 1 KRR: 4 = Q(dl_%) necessary.
O NN can learn nonlinear f., but

requires nondegeneracy (k = 1) O NN: 6 = w(dl_%> sufficient.
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Setting: Beyond Perfect Alignment?

Question: what happens if we don't have perfect alignment, i.e. 8, # pn?

(1 Spiked data: x ~ N(0,/ + 0pupu’).
O Misaligned teacher:

0x) = 0 (e (00 82))

degree p and information exponent k .

, with

A

Spike-target alignment: (u,3,) <d 7, Spike magnitude: 6 = d2 . J
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Insufficiency of One Gradient Step

First gradient step: denote x = 1+ 0(, 3,)?,
Elxo’((x, w))f*(x)] = ?E8, -E[ol (7/2(x,8.) ) o' (x, w))
= (B, + (B, )0 - 1)

® One gradient step does not find the direction of f,.

© When (i, 3,) < d77* is nontrivial, i.e., 71 < 1/2, the first GD step provides
“warm-start” to subsequent gradient updates.

Goal: characterize the sample complexity? of feature learning under varying
Spike-target alignment: (u,3,) < d=7  Spike magnitude: 6 = d7= .

Question: what is the suitable gradient dynamics for this setting?

2
21



Algorithm: Spherical Gradient Flow?

Simplification — one-neuron dynamics. Consider wo = wy = ...wy randomly

initialized from unit sphere: f'(x) = o({(x, w')).

Candidate | — spherical gradient flow

dw' = —V*R(f)dt, V R(f') := (I — w'w' )V, R(F).

Proposition ( Failure of Spherical Gradient, informal)
Consider the perfectly aligned setting 3, = p. Then for the population dynamics,
Supt20‘<wt,ﬂ*>| S d71/27

when 6 < d"2,7, € (0,d ).
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Algorithm: Normalized Gradient Flow

Candidate |l — normalized gradient flow: f'(x)= U(%) :

dw' = —n(w")V,R(f")dt,

Intuition: Ex[f*(x)?] = E,x0,1)[0(2)?] = objective reduced to correlation loss ©

Algorithm 1: Gradient-based training for two-layer neural network

empirical gradient flow on first-layer

dw' = —p(w)E T VL R(F1) dt,

ridge regression for second-layer

3 argmin, {157, (v — (;.2)* + Mall*

return prediction function f(x) = ﬁ SV dio((x,wf) + bi)

23



Sample & Runtime Complexity

Recall (w,B,)=<d™ 7 and 0 =< d” , with v1 € [0,1/2] and 72 € [0, 1].

Theorem ([MWS+23] Complexity of Empirical Gradient Flow)

Two-layer RelLU network learns f, with information exponent k and width m =< ¢~ 1,

if the sample complexity satisfies®

d(d*"*ve?) 0< v <,
n= d(d“*l) v 5*2) <2 < 27,
d(d(k—l) v 5‘2) 271 < 72 < 1,




Interplay between Spike Magnitude and Alignment

Recall (u,8,)=<d " and 6= d" , with v; € [0,1/2] and v, € [0, 1].

Interpretation of Rates:

o

e ~1 = 0: perfect alignment
puts us in the “easy” regime.

e v; = 0.5: two independent
and 3, on unit sphere.

Y2 (gpikeomaggitudg)

e v € (0,0.5): problem gets - - - -

easier for larger > . 71 (spike-target alignment)
6% sample complexity High

Theorem ([Donhauser et al. 2021] KRR lower bound, informal)

Rotationally invariant kernels require at least n = d°*~72?) samples to learn f,.
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Conclusion: Learning under Structured Data

So far: learning single-index model under spiked covariance data.

x ~ N(0,1+0pp’), f.(x) = 0u((x,0.)), where (B,,p)<d™ ", 0<d". |

O Perfectly aligned setting (3, = ).
[ ]
O Partially aligned setting (3, # u).

NN & KRR succeed

“Qo.
=1
° =
g a}Dv
S NN succeeds, 3
o KRR fails g .
% 10! ’%
H @o.
= ~
——— f=dl U c
e @x=gl-lk 0.0
Y1 (spike-target alignment)
102 10° - -
dimensionality d sample complexity High 26



Beyond “Narrow” NNs: the Mean-field Regime

“Blessing” of overparameterization: recall that
B[V, £(n)] ~ 8. - > (7 + 1 assaaoa(wi, B.) + .
i=0
©)
®

Mean-field limit : infinite-width two-layer neural network

o((-, W) L& For convex loss L, learning is
fx) = 301, W)

i=1 ® non-convex w.r.t. w;

e convex w.r.t. distribution p

N -
O oW
gy AN Perspective: study optimization
«‘{{‘{%;‘%‘ f%) = E,[o((x, w))] = Jg((x’w»p(w)dw in the space of measures
2=
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Classifying Sparse Parity Functions

Anisotropic k-parity: x = Az, y =sign([[,c, z), z "~ Unif({+1/Vd}).

e Analogous to single-index f,

o +1
A with information exponent k.
-1
_1—’ e When A = [ (isotropic), CSQ
® ‘ lower bound n = d*1.
+1

Example - spiked covariance: for i € I, ¢ Ix we have 2 < de/?.
J

Theorem ([SWO+23] Mean-field Learning of Anisotropic Parity)

Two-layer NN optimized by noisy gradient descent learns k-parity with
, N =exp(d*™®), t=exp(d'™®).
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Analysis: Mean-field Langevin Dynamics

Mean-field Langevin dynamics. Given convex F : P>(RY) — R,
dXe = -V (X)) dt + VoXdW,,  pe = Law(Xy).
L]
© Exponential convergence in the infinite-width & continuous-time limit.

© Uniform-in-time propagation of chaos at any fixed temperature \.
[ ]

® Logarithmic Sobolev constant depends exponentially on .

Question: Poly-time learning guarantees for an interesting class of .7 J
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